Supporting information for

Ansavaricins F – I, New DNA Topoisomerase Inhibitors Produced by *Streptomyces* sp. S012

Zhiqiang Zhang,^a Xingkang Wu,^a Rentai Song,^b Juanli Zhang,^c Haoxin Wang,^b Jing

Zhu,^b Chunhua Lu^a and Yuemao Shen^{*ab}

^aKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China, E-mail: yshen@sdu.edu.cn; <u>Tel:+86-531-88382108</u>
^bState Laboratory of Microbial Technology, Shandong University, No. 27 South Shanda Road, Jinan, Shandong 250100, P. R. China
^cDepartment of pharmacy, Xijing Hospital, The Fourth Military Medical University, Changle West Street 15, Xi'an, Shaanxi 710032, P. R. China

Table of Contents

Table S1. NMR spectroscopy data (pyridine-d5) for compound 1
Table S2. NMR spectroscopy data (pyridine-d5) for compound 2
Table S3. NMR spectroscopy data (pyridine-d5) for compound 3
Table S4. NMR spectroscopy data (pyridine-d5) for compound 4
Figure S1. ¹ H NMR (400 MHz, pyridine- <i>d</i> ₅) spectrum for compound 18
Figure S2. ¹³ C NMR (101 MHz, pyridine- <i>d</i> ₅) spectrum for compound 19
Figure S3. ¹ H- ¹ H COSY (400 MHz, pyridine- <i>d</i> ₅) spectrum for compound 110
Figure S4. HSQC (400 MHz, pyridine- <i>d</i> ₅) spectrum for compound 111
Figure S5. HMBC (400 MHz, pyridine- <i>d</i> ₅) spectrum for compound 112
Figure S6. ROESY (400 MHz, pyridine- <i>d</i> ₅) spectrum for compound 113
Figure S7. ¹ H NMR (600 MHz, pyridine- <i>d</i> ₅) spectrum for compound 214
Figure S8. ¹³ C NMR (151 MHz, pyridine- <i>d</i> ₅) spectrum for compound 215
Figure S9. ¹ H- ¹ H COSY (600 MHz, pyridine- <i>d</i> ₅) spectrum for compound 216
Figure S10. HSQC (600 MHz, pyridine- <i>d</i> ₅) spectrum for compound 217
Figure S11. HMBC (600 MHz, pyridine-d5) spectrum for compound 218
Figure S12. ROESY (600 MHz, pyridine- <i>d</i> ₅) spectrum for compound 219
Figure S13. ¹ H NMR (400 MHz, pyridine- <i>d</i> ₅) spectrum for compound 320
Figure S14. ¹³ C NMR (101 MHz, pyridine- <i>d</i> ₅) spectrum for compound 321
Figure S15. ¹ H- ¹ H COSY (400 MHz, pyridine- <i>d</i> ₅) spectrum for compound 322
Figure S16. HSQC (400 MHz, pyridine- <i>d</i> ₅) spectrum for compound 323
Figure S17. HMBC (400 MHz, pyridine- <i>d</i> ₅) spectrum for compound 324
Figure S18. ROESY (400 MHz, pyridine- <i>d</i> ₅) spectrum for compound 325
Figure S19. ¹ H NMR (600 MHz, pyridine- <i>d</i> ₅) spectrum for compound 426
Figure S20. ¹³ C NMR (151 MHz, pyridine- <i>d</i> ₅) spectrum for compound 427
Figure S21. ¹ H- ¹ H COSY (600 MHz, pyridine- <i>d</i> ₅) spectrum for compound 428
Figure S22. HSQC (600 MHz, pyridine- <i>d</i> ₅) spectrum for compound 429

Figure S23. HMBC (600 MHz, pyridine- <i>d</i> ₅) spectrum for compound 430
Figure S24. ROESY (600 MHz, pyridine- <i>d</i> ₅) spectrum for compound 431
Figure S26. High-resolution ESIMS spectrum for compound 233
Figure S27. High-resolution ESIMS spectrum for compound 334
Figure S28. High-resolution ESIMS spectrum for compound 435
Figure S29. The proposed streptovaricin biosynthetic logic
Figure S30. Streak plate of <i>Streptomyces</i> sp. S012 culture in ISP336
Figure S31. The Topo I-mediated DNA relaxation inhibition rate (%) of compounds
1-9 and CPT
Figure S32. The comparison of Topo I-mediated DNA relaxation inhibition rate (%)
of compounds 1, 3 and CPT at different concentrations
Figure S33. The Topo II α -mediated DNA relaxation inhibition rate (%) of compounds
1-9, CS1 and VP16
Figure S34. The Topo II α -mediated kDNA decatenation inhibition rate (%) of
compounds 1-9, CS1 and VP1638
Figure S35. The comparison of Topo II α -mediated kDNA decatenation inhibition rate
(%) of compound 3, VP16 and CS1 at different concentrations
Figure S36. The cell growth inhibition against six human tumor cell lines of
compound 3
Figure S37. The cell growth inhibition against six human tumor cell lines of
compound VP-1640
Figure S38. The gene sequence of AHBA synthase in <i>Streptomyces</i> sp. S01240

Pos.	$\delta_{\rm H}$ (mult., J Hz)	$\delta_{ m C}$	¹ H- ¹ H COSY	HMBC
1		185.3s		
2		140.7s		
3		138.0s		
4		185.1s		
5	7.51 (br s)	108.9d		C-1/C-4, C-7, C-9
6		163.1s		
7		118.2s		
8		164.8s		
9		108.3s		
10		132.6s		
11	2.41 (s)	9.0q		C-6, C-7, C-8
12		168.2s		
13		132.2s		
14	7.95 (d, 11.7)	130.8d	H-15	C-12, C-30
15	6.75 (t, 11.4)	125.4d	H-16	C-17
16	6.24 (t, 10.7)	139.6d	H-15,H-17	C-14
17	3.31 (m)	35.1d	H-31	
18	4.77 (dd, 10.3,1.9)	85.0d	H-19	C-16
19	2.60 (m)	34.5d	H-18, H-20 H-32	
20	4.30 (t, 2.6)	73.8d	H-19, H-21	C-18, C-33
21	3.50 (d, 1.6)	51.3d	H-20	C-20, C-33
22	4.06 (d, 10.3)	78.1d		C-20, C-24, C-33
23	2.82 (m)	38.6d	H-24, H-34	
24	3.99 (d, 11.1)	76.3d	H-23	C-25
25		84.3s		
26	4.52 (d, 11.2)	85.8d	H-27	C-22, C-24, C-25, C-35, C-36
27	3.47 (m)	36.4d	H-26, H-36	
28		176.5s		
29	2.31 (s)	14.3q		C-2, C-3, C-4
30	2.28 (s)	13.8q		C-12, C-13, C-14
31	1.23 (d, 6.9)	19.0q	H-17	C-16, C-17, C-18
32	1.32 (d, 6.8)	14.5q	H-19	C-18, C-19, C-20
33		170.4s		
34	1.36 (d, 6.4)	13.6q	H-23	C-22, C-23, C-24
35	1.77 (s)	18.7q		C-24, C-26
36	1.45 (d, 6.8)	14.0q	H-27	C-26, C-27, C-28
NH	10.05 (s)	_		C-3

 Table S1. NMR spectroscopy data (pyridine-d5) for compound 1

Pos.	$\delta_{\rm H}$ (mult., J Hz)	$\delta_{ m C}$	¹ H- ¹ H COSY	HMBC
1		185.3s		
2		138.2s		
3		140.7s		
4		185.1s		
5	7.51 (s)	108.8d		C-1/C-4, C-7, C-9, C-10
6		163.1s		
7		118.3s		
8		164.8s		
9		108.4s		
10		132.2s		
11	2.41 (s)	9.0q		C-6, C-7, C-8
12		168.3s		
13		133.2s		
14	7.80 (s)	130.4d	H-15	C-12, C-30
15	6.60 (t, 11.4)	125.9d	H-16	C-13, C-17
16	5.98 (t, 10.7)	138.4d	H-15, H-17	C-14
17	3.19 (m)	34.4d	H-16, H-31	C-31
18	4.04 (dd, 2.3, 10.9)	86.8d	H-19	C-16, C-17, C-31
19	2.67 (m)	32.9d	H-18, H-20, H-32	C-18, C-20
20	7.05 (d, 2.1)	150.4d	H-19	C-18, C-19, C-22, C-32, C-33
21		130.8s		
22	4.99 (m)	73.1d	H-23	C-20, C-21, C-24, C-33
23	2.26 (m)	40.6d	H-22, H-24, H-34	
24	4.17 (d, 10.9)	76.4d	H-23	C-23, C-25, C-34, C-35
25		84.5s		
26	4.40 (d, 11.1)	86.5d	H-27	C-22, C-24, C-25, C-35, C-36
27	3.62 (br s)	36.5d	H-26, H-36	C-26, C-36
28		176.9s		
29	2.31 (s)	14.5q		C-2, C-3, C-4
30	2.27 (s)	13.826q		C-12, C-13, C-14
31	1.11 (d, 6.9)	18.5q	H-17	C-16, C-17, C-18
32	1.09 (d, 7.2)	16.3q	H-19	C-18, C-19, C-20
33		165.1s		
34	1.30 (d, 6.5)	13.831q	H-23	C-22, C-23, C-24
35	1.84 (s)	18.8q		C-24, C-25, C-26
36	1.37 (d, 6.9)	14.0q		C-26, C-27, C-28
NH	10.06 (s)	-		

 Table S2. NMR spectroscopy data (pyridine-d₅) for compound 2

Pos.	$\delta_{\rm H}$ (mult., J Hz)	$\delta_{ m C}$	¹ H- ¹ H COSY	HMBC
1		185.5s		
2		141.0s		
3		138.7s		
4		185.4s		
5	7.62 (s)	109.1d		C-1/C-4, C-7, C-9
6		163.3s		
7		118.5s		
8		164.9s		
9		108.6s		
10		132.4s		
11	2.40 (s)	9.1q		C-6, C-7, C-8
12		168.8s		
13		133.3s		
14	7.83 (d, 11.6)	130.7d	H-15	C-12, C-30
15	6.64 (t, 11.4)	126.0d	H-16	C-13, C-17
16	6.00 (t, 10.7)	138.9d	H-15, H-17	C-14
17	3.30 (m)	34.7d	H-16, H-31	
18	4.06 (dd, 10.7, 2.0)	87.2d	H-19	C-16
19	2.53 (m)	32.9d	H-18, H-32	
20	6.73 (d, 1.0)	148.2d		C-32, C-22, C-18, C-33
21		132.2s		
22	4.94 (d, 9.5)	78.5d	H-23	C-20, C-21, C-23, C-33, C-34
23	2.33 (s)	47.1d	H-22, H-24, H-34	C-22, C-25
24	4.03 (d, 9.6)	85.6d	H-23	C-26, C-34, C-35
25		83.0s		
26	7.88 (s)	144.2d		C-25, C-27, C-28, C-36
27		130.8s		
28		170.0s		
29	2.33(s)	14.5q		C-2, C-3, C-4
30	2.32(s)	14.0q		C-12, C-13, C-14
31	1.19 (d, 6.7)	18.8q	H-17	C-16, C-17, C-18
32	1.09 (d, 7.1)	16.7q	H-19	C-18, C-19, C-20
33		165.5s		, ,
34	1.38 (d, 6.5)	15.20q	H-23	C-22, C-23, C-24
35	1.65 (s)	25.6q		C-24, C-25, C-26
36	2.33 (s)	15.24q		C-26, C-27, C-28
37	3.74 (s)	52.5q		C-28
NH	10.15 (s)	-		

Table S3. NMR spectroscopy data (pyridine- d_5) for compound 3

Pos.	$\delta_{\rm H}$ (mult., J Hz)	$\delta_{ m C}$	¹ H- ¹ H COSY	HMBC
1		185.0s		
2		138.8s		
3		140.5s		
4		184.8s		
5	7.34 (s)	103.4d		C-1/C-4, C-7, C-9
6		164.2s		
7		119.8s		
8		161.5s		
9		107.5s		
10		132.1s		
11	2.21 (s)	8.7q		C-6, C-7, C-8
12		168.4s		
13		133.2s		
14	7.78 (d, 11.7)	130.4d	H-15	C-12, C-30
15	6.59 (t, 11.4)	125.7d	H-16	C-13, C-17
16	5.95 (t, 10.7)	138.5d	H-15, H-17	C-14
17	3.13 (m)	34.4d	H-16, H-18, H-31	
18	3.98 (t, 9.4)	86.8d	H-17, H-19	C-16
19	2.49 (m)	32.7d	H-18, H-20, H-32	
20	6.70 (s)	147.8d		C-18, C-19, C-22, C-32, C-33
21		132.3s		
22	4.94 (d, 9.5)	78.3d	H-23	C-20, C-21, C-34
23	2.31 (m)	47.1d	H-22, H-24, H-34	
24	3.98 (t, 9.4)	85.3d	H-23	C-34, C-35
25		82.7s		
26	7.90 (s)	144.0d		C-25, C-27, C-28, C-36
27		130.7s		
28		169.7s		
29	2.35 (s)	15.1q		C-2, C-3, C-4
30	2.27 (s)	13.8q		C-12, C-13, C-14
31	1.11 (d, 6.8)	18.5q	H-17	C-16, C-17, C-18
32	1.01 (d, 7.1)	16.5q	H-19	C-18, C-19, C-20
33		165.1s		
34	1.36 (d, 6.5)	15.0q	H-23	C-22, C-23, C-24
35	1.61 (s)	25.5q		C-24, C-25, C-26
36	2.33 (s)	14.6q		C-26, C-27, C-28
37	3.70 (s)	52.2q		C-28
38	3.76 (s)	56.5q		C-6
NH	10.16 (s)			

 Table S4. NMR spectroscopy data (pyridine-d5) for compound 4

 10.0457

 7.9168

 7.5075

 6.7595

 6.7565

 6.7565

 6.7565

 6.7565

 6.7565

 6.7565

 6.7565

 6.7565

 6.7565

 6.7565

 6.7565

 6.7565

 6.7565

 6.7565

 6.7565

 6.1914

 6.2448

 6.2182

 6.2182

 6.1914

 6.2182

 6.1914

 6.2448

 6.2383

 7.10373

 3.4517

 3.4517

 3.4513

 3.4513

 3.4513

 3.4513

 3.4513

 3.4513

 3.4513

 3.4513

 3.4513

 3.4513

 3.4513

 3.4513

 3.4513

 3.4513

 3.4513

 3.4513

 3.4514

 2.55665

 3.4 1.10 1.07∄ 1.36∄ 0.97₋T .27₋₁ **1.07**_∃ F76. .11 -08<u>+</u> <u>_</u> - $\overline{}$ 7 $\overline{}$ 9.5 8.5 5.5 10.0 9.0 8.0 7.5 7.0 6.5 6.0 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 f1 (ppm)

Figure S1. ¹H NMR (400 MHz, pyridine-*d*₅) spectrum for compound 1

Figure S3. ¹H-¹H COSY (400 MHz, pyridine-*d*₅) spectrum for compound 1

Figure S5. HMBC (400 MHz, pyridine-*d*₅) spectrum for compound 1

Figure S6. ROESY (400 MHz, pyridine-*d*₅) spectrum for compound 1

Figure S7. ¹H NMR (600 MHz, pyridine-*d*₅) spectrum for compound 2

Figure S8. ¹³C NMR (151 MHz, pyridine-*d*₅) spectrum for compound 2

Figure S10. HSQC (600 MHz, pyridine-*d*₅) spectrum for compound 2

Figure S11. HMBC (600 MHz, pyridine-*d*₅) spectrum for compound 2

Figure S12. ROESY (600 MHz, pyridine-*d*₅) spectrum for compound 2

Figure S13. ¹H NMR (400 MHz, pyridine-*d*₅) spectrum for compound 3

Figure S14. ¹³C NMR (101 MHz, pyridine-*d*₅) spectrum for compound 3

Figure S15. ¹H-¹H COSY (400 MHz, pyridine-*d*₅) spectrum for compound 3

Figure S17. HMBC (400 MHz, pyridine-*d*₅) spectrum for compound 3

Figure S18. ROESY (400 MHz, pyridine-*d*₅) spectrum for compound 3

Figure S19. ¹H NMR (600 MHz, pyridine-*d*₅) spectrum for compound 4

Figure S20. ¹³C NMR (151 MHz, pyridine-*d*₅) spectrum for compound 4

Figure S22. HSQC (600 MHz, pyridine-d₅) spectrum for compound 4

Figure S23. HMBC (600 MHz, pyridine-*d*₅) spectrum for compound 4

Figure S24. ROESY (600 MHz, pyridine-*d*₅) spectrum for compound 4

Figure S25. High-resolution ESIMS spectrum for compound 1

20160923_zzq_S12F #14-17 RT: 0.39-0.47 AV: 4 NL: 2.50E6 T: FTMS + p ESI Full ms [200.00-1000.00]

Figure S26. High-resolution ESIMS spectrum for compound 2

20160923_zzq_S12AI #6-14_RT: 0.16-0.38_AV: 9_NL: 9.52E5 T: FTMS + p ESI Full ms [200.00-1000.00]

Figure S27. High-resolution ESIMS spectrum for compound 3

Figure S28. High-resolution ESIMS spectrum for compound 4

Figure S29. The proposed streptovaricin biosynthetic logic

Figure S30. Streak plate of *Streptomyces* sp. S012 culture in ISP3

Figure S31. The Topo I-mediated DNA relaxation inhibition rate (%) of compounds 1-9 and CPT.

Figure S32. The comparison of Topo I-mediated DNA relaxation inhibition rate (%) of compounds 1, 3 and CPT at different concentrations.

Figure S33. The Topo IIa-mediated DNA relaxation inhibition rate (%) of compounds 1-9, CS1 and VP16.

Figure S34. The Topo IIα-mediated kDNA decatenation inhibition rate (%) of compounds 1-9, CS1 and VP16.

Figure S35. The comparison of Topo IIa-mediated kDNA decatenation inhibition rate (%) of compound 3, VP16 and CS1 at different concentrations.

Figure S36. The cell growth inhibition against six human tumor cell lines of compound 3.

	The cell growth inhibition against six human tumor cell lines of compound 3 (mean \pm SD)						
Concentration (μ M)	HeLa	MDA-MB-453	MDA-MB-231	THP-1	HepG2	HL7702	
200	84.03 ± 1.00	89.98 ± 2.34	36.93 ± 3.25	51.13 ± 2.13	68.38 ± 2.78	96.56 ± 0.25	
100	65.61 ± 2.92	83.13 ± 1.52	16.62 ± 3.72	48.76 ± 4.08	57.50 ± 2.92	96.40 ± 0.32	
50	52.13 ± 1.20	65.91 ± 4.44	9.55 ± 2.11	36.32 ± 3.57	31.60 ± 1.26	91.98 ± 0.64	
25	26.06 ± 2.64	26.30 ± 4.30	6.88 ± 4.52	18.88 ± 2.99	8.01 ± 2.38	33.74 ± 2.80	
12.5	14.71 ± 4.75	14.58 ± 4.73	4.67 ± 2.69	14.05 ± 1.03	0.050 ± 3.10	1.66 ± 3.74	
6.25	11.70 ± 4.29	3.89 ± 4.74	6.44 ± 2.48	10.66 ± 4.39	-4.68 ± 4.26	-7.89 ± 4.15	

_	The cell growth inhibition against six human tumor cell lines of compound VP-16 (mean \pm SD)						
Concentration (μ M)	HeLa	MDA-MB-453	MDA-MB-231	THP-1	HepG2	HL7702	
3.125	52.80 ± 2.53						
6.250		52.40 ± 4.29					
3.125			47.50 ± 3.38				
0.800				53.26 ± 4.58			
20.000					49.05 ± 1.45		
1.250						64.42 ± 1.49	

Figure S37. The cell growth inhibition against six human tumor cell lines of compound VP-16.

Figure S38. The gene sequence of AHBA synthase in Streptomyces sp. S012.