Mesoporous C, N-Codoped TiO₂ Hybrid Shells with Enhanced

Visible Light Photocatalytic Performance

Minggui Wang, Jie Han, * Yimin Hu and Rong Guo*

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu,

225002, P. R. China. E-mail: hanjie@yzu.edu.cn; guorong@yzu.edu.cn

Figure S1 TEM images of (a) PS spheres, (b) PS/PANI hybrids, (c) PS/PANI/TiO₂ hybrids.

Figure S2 Particle size distribution of C/N-TiO₂(600) hybrid shells from a statistical study of the TEM images.

Figure S3 TEM images of (a) TiO₂(600) hollow spheres and (b) C-TiO₂(600) hybrid shells.

Figure S4 PL spectra of TiO₂(600) hollow spheres, C-TiO₂(600) and C/N-TiO₂(600) hybrid shells.

Figure S5 Evolution of RhB concentration and TOC values of reaction solution with reaction time under visible light using C/N-TiO₂(600) hybrid shells as photocatalysts.

'iO ₂ (wt%)	C (wt%)	N (wt%)
100	0	0
85.9	14.1	0
85.0	13.9	1.1
	ïO ₂ (wt%) 100 85.9 85.0	TiO2 (wt%) C (wt%) 100 0 85.9 14.1 85.0 13.9

Table S1 Content of C, N and TiO₂ in TiO₂(600) hollow spheres, C-TiO₂(600), and C/N-TiO₂(600) hybrid shells.

Table S2 Comparison of photocatalytic activities on dye degradation using different C or/and N doped TiO₂ photocatalysts under visible light irradiation.

Sample	Dye degradation (min ⁻¹)	Ref
N doped TiO ₂ powder	0.00446	1
N doped TiO ₂ nanofibers	0.0065	2
GR-N/TiO ₂ composite	0.0154	3
N doped TiO ₂ powder	0.0040	4
C-TiO ₂ (600) hybrid shells	0.0138	this work
C/N-TiO ₂ (600) hybrid shells	0.0222	this work

Table S3 TOC result for the degradation of RhB using C/N-TiO₂(600) as catalyst under visible light.

Time (min)	0	20	60	100	120	150
TOC (ppm)	11.28	7.984	6.852	3.941	2.813	1.885

Reference

1. Y. L. Kuoa, T. L. Su, F. C. Kung and T. J. Wu, J. Hazard. Mater. 2011, 190, 938-944.

2. H. P. Li, W. Zhang, S. Y. Huang and W. Pan, Nanoscale 2012, 4, 801-806.

3. N. R. Khalid, E. Ahmeda, Z. L. Hong, Y. W. Zhang and M. Ahmad, *Current Appl. Phys.* 2012, **12**, 1485-1492.

4. T. L. Su, Y. L. Kuo, T. J. Wu and F. C. Kung, J. Chem. Technol. Biotechnol. 2012, 87, 160-164.