Supporting Information for:

Stabilization of the Thermal Decomposition

Process of Self-reducible Copper Ion Ink for Direct Printed Conductive Patterns

Kuan-Ming Huang,¹ Hiroki Tsukamoto,² Yingqiong Yong,² Hsien-Lung Chiu,¹ Mai Thanh Nguyen,² Tetsu Yonezawa,^{2*} Ying-Chih Liao^{1*}

¹ Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan ²Division of Materials Science and Engineering, Hokkaido University, Sapporo, Hokkaido, Japan

Contents:

- 1. Pictures of various CuF/amine inks.
- XRD pattern of CuF-MIPA film and CuF-MIPA-OA ink sintered under N₂ atmosphere.
- 3. Photographs of printed lines using CuF-MIPA ink.
- 4. The photography of thermal decomposition process of copper ink with different OA/MIPA ratio.

*To whom correspondence should be addressed. Phone: 886-2-3366-9688 Email: liaoy@ntu.edu.tw

- 5. Thermal decomposition process of CuF-IPA-OA film with different film thickness.
- 6. Full size picture of Figure 3 and particle size distribution with various OA/MIPA ratio.
- Particle size distribution of CuF-MIPA-OA film at calcination temperature of 110 °C, 125 °C, and 140 °C.
- 8. Photograph of a pen-writing copper thin film.
- 9. Comparison of characteristics with other low temperature sinterable MOD ink related papers.

Figure S1. Photographs of CuF-MIPA, CuF-MIPA-OA and CuF-MIPA-OA ink with 1 wt% PVP (CuF-IPA-OA-PVP ink). The ink over the wall is due to the stirring effect in the preparation process and nearly disappear after 20 minutes.

Figure S2. (a) XRD pattern of CuF-MIPA film sintered at 120 °C for 40 minutes under N₂ atmosphere. (b) XRD pattern of copper thin film obtained from calcination of CuF-MIPA-OA ink at 105 °C and 140 °C for 40 minutes.

Figure S3. Photographs of printed lines using CuF-MIPA ink calcined at 140 $^{\circ}$ C under N₂ atmosphere.

Figure S4. (a) The photography of thermal decomposition process of copper ink with different OA/MIPA ratio. The photo was taken when copper starts to nucleate. Variation of (b) bubble size and (c) number with OA/MIPA ratio.

Figure S5. Thermal decomposition process of CuF-IPA-OA film with different film thickness. The photograph was taken when copper starts to nucleate.

Figure S6. SEM images and particle size distributions at various OA/MIPA ratio. The particle size distributions are evaluated by image analysis from ImageJ software.

Figure S7. SEM images and particle size distributions of the CuF-MIPA-OA ink sintered at different calcination temperatures.

Figure S8. Photograph of a pen-writing copper thin film on PET. The inset picture shows the pattern before calcination.

Author	Copper complexes	Sintering condition	Sintering time	Sintering atmosphere	Resistivity (μΩ-cm)
Yabuki et al., 2011 ¹	CuF + octylamine	140°C	60 min	Nitrogen	20
Yabuki <i>et</i> <i>al</i> , 2012 ²	CuF+ bibutylamine + octylamine	140°C	30 min	Nitrogen	5
Farraj <i>et</i> <i>al.</i> , 2015 ³	CuF+2-amino-2- methyl-1-propanol	190°C	9 min	Nitrogen	10.5
Yonezawa <i>et al.</i> , 2016 ⁴	CuF+isopropanol amine+Cu particle	100°C	1 hr	Nitrogen	900
Paquet <i>et</i> <i>al.</i> ,2016 ⁵	CuF+ 3- butylpyridine + 2- ethyl-1- hexylamine	135°C	5 min	Nitrogen	14
Li et al 2016 ⁶	CuF+2-amino-2- methyl-1- propanol+ Cu particle	140°C	15 min	Nitrogen	11.3
Xu et al., 2016 ⁷	CuF+butylamine+ octylamine	160 °C	20 min	Vacuum	21.4
Yong <i>et</i> <i>al.</i> , 2017 ⁸	CuF+isopropanol amine+Cu particle	100°C	1 hr	Nitrogen	88
This work	CuF+ monoisopropanol amine+octylamine	140 °C	5 min	Nitrogen	20

Table S1. Comparison of characteristics with other copper MOD inks

References :

- 1. A. Yabuki and S. Tanaka, *Materials Research Bulletin*, 2012, 47, 4107-4111.
- 2. A. Yabuki, N. Arriffin and M. Yanase, *Thin Solid Films*, 2011, **519**, 6530-6533.
- 3. Y. Farraj, M. Grouchko and S. Magdassi, *Chem Commun*, 2015, **51**, 1587-1590.
- 4. T. Yonezawa, H. Tsukamoto, Y. Yong, M. T. Nguyen and M. Matsubara, *RSC advances*, 2016, **6**, 12048-12052.
- 5. C. Paquet, T. Lacelle, B. Deore, A. Kell, X. Liu, I. Korobkov and P. Malenfant, *Chem Commun*, 2016, **52**, 2605-2608.
- 6. W. Li, S. Cong, J. Jiu, S. Nagao and K. Suganuma, *J Mater Chem C*, 2016, **4**, 8802-8809.
- 7. W. Xu and T. Wang, *Langmuir*, 2016, **33**, 82-90.
- 8. Y. Yong, M. T. Nguyen, T. Yonezawa, T. Asano, M. Matsubara, H. Tsukamoto, Y.-C. Liao, T. Zhang, S. Isobe and Y. Nakagawa, *J Mater Chem C*, 2017.