Challenging cyclopropanation reactions on non-activated double bonds of fatty esters

Beatriz Angulo, José M. Fraile, * Clara I. Herrerías* and José A. Mayoral

Departamento de Catálisis y Procesos Catalíticos, Instituto de Síntesis Química y

Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Facultad de Ciencias,

C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain

List of contents

NMR spectra of products	S2-S22
Chromatographic conditions and typical chromatograms	S23-S31

NMR spectra of products

¹H-RMN (CDCl₃, δ ppm, 400 MHz)

¹³C-RMN (APT) (CDCl₃, δ ppm, 100 MHz)

¹H-RMN (C_6D_6 , δ ppm, 400 MHz)

¹³C-RMN (APT) (C₆D₆, δ ppm, 100 MHz)

 $^{1}\text{H-}^{13}\text{C}$ HSQC (CDCl₃, δ ppm)

¹H-¹³C HSQC (C₆D₆, δ ppm)

¹H-RMN (CDCl₃, δ ppm, 400 MHz)

¹³C-RMN (APT) (CDCl₃, δ ppm, 100 MHz)

 1 H-RMN (C₆D₆, δ ppm, 400 MHz)

 $^{13}\text{C-RMN}$ (APT) (C₆D₆, δ ppm, 100 MHz)

¹H-¹³C HSQC (CDCl₃, δ ppm)

 $^{1}\text{H-}^{13}\text{C}$ HSQC (C₆D₆, δ ppm)

¹H-RMN (CDCl₃, δ ppm, 400 MHz)

¹³C-RMN (APT) (CDCl₃, δ ppm, 100 MHz)

 1 H-RMN (C₆D₆, δ ppm, 400 MHz)

¹³C-RMN (APT) (C₆D₆, δ ppm, 100 MHz)

¹H-RMN (CDCl₃, δ ppm, 400 MHz)

¹³C-RMN (CDCl₃, δ ppm, 100 MHz)

 1 H-RMN (C₆D₆, δ ppm, 400 MHz)

 $^{13}\text{C-RMN}$ (C₆D₆, δ ppm, 100 MHz)

¹H-RMN (CDCl₃, δ ppm, 400 MHz)

 $^{13}\text{C-RMN}$ (APT) (CDCl_3, δ ppm, 100 MHz)

 1 H-RMN (C₆D₆, δ ppm, 400 MHz)

 $^{13}\text{C-RMN}$ (APT) (C_6D_6, δ ppm, 100 MHz)

¹H-RMN (C_6D_6 , δ ppm, 400 MHz)

¹³C-RMN (APT) (C₆D₆, δ ppm, 100 MHz)

¹H-RMN (CDCl₃, δ ppm, 400 MHz)

¹³C-RMN (APT) (CDCl₃, δ ppm, 100 MHz)

¹H-RMN (C_6D_6 , δ ppm, 400 MHz)

¹³C-RMN (APT) (C₆D₆, δ ppm, 100 MHz)

¹H-RMN (C_6D_6 , δ ppm, 400 MHz)

¹³C-RMN (APT) (C₆D₆, δ ppm, 100 MHz)

1 H-RMN (C₆D₆, δ ppm, 400 MHz)

¹³C-RMN (APT) (C_6D_6 , δ ppm, 100 MHz)

¹H-RMN (C_6D_6 , δ ppm, 400 MHz)

¹³C-RMN (APT) (C₆D₆, δ ppm, 100 MHz)

 $^{1}\text{H-RMN}$ (MeOD, δ ppm, 400 MHz)

¹³C-RMN (APT) (MeOD, δ ppm, 100 MHz)

¹H-RMN (MeOD, δ ppm, 400 MHz)

 $^{13}\text{C-RMN}$ (APT) (MeOD, δ ppm, 100 MHz)

¹H-RMN (DMSO, δ ppm, 400 MHz)

 $^{13}\text{C-RMN}$ (APT) (DMSO, δ ppm, 100 MHz)

Chromatographic conditions and typical chromatograms

A) Cyclopropanation of methyl oleate (1) and EDA

FID detector, HP5 column: 30 m × 0.25 mm × 0.25 μ m; helium as carrier gas; injector temperature: 280 °C; detector temperature: 300 °C; oven program: 70 °C (4 min), 25 °C min⁻¹ to 150 °C, 5 °C min⁻¹ to 250 °C (20 min); retention times: ethyl diazoacetate 2.0 min, diethyl maleate 6.1 min, diethyl fumarate 6.2 min, eicosane (internal standard) 15.1 min, methyl oleate 16.7 min, *cis* cyclopropane **3** 24.2 min, *trans* cyclopropane **2** 24.4 min.

5 7.5 10 12.5 15 17.5 20 22.5 25 min

B) Cyclopropanation of methyl erucate (4) and EDA

FID detector, OMEGAWAX[™] 250 column: 30 m × 0.25 mm × 0.25 µm; helium as carrier gas; injector temperature: 280 °C; detector temperature: 300 °C; oven program: 200 °C (4 min), 35 °C min⁻¹ to 260 °C (30 min); retention times: ethyl diazoacetate 2.0 min, diethyl maleate 2.6 min, diethyl fumarate 2.9 min, eicosane (internal standard) 4.0 min, methyl erucate 10.8 min, *cis* cyclopropane **6** 28.7 min, *trans* cyclopropane **5** 29.7 min.

C) Cyclopropanation of methyl elaidate (7) and EDA

FID detector, OMEGAWAX[™]250 column: 30 m × 0.25 mm × 0.25 µm; helium as carrier gas; injector temperature: 280 °C; detector temperature: 300 °C; oven program: 205 °C (5 min), 20 °C min⁻¹ to 250 °C (20 min); retention times: ethyl diazoacetate 2.0 min, diethyl maleate 2.6 min, diethyl fumarate 2.8 min, eicosane (internal standard) 3.7 min, methyl elaidate 7.9 min, cyclopropane **8** 17.9 min, cyclopropane **9** 18.1 min.

FID detector, Zebron ZB-5HT Inferno column: 30 m × 0.25 mm × 0.25 μ m; helium as carrier gas; injector temperature: 280 °C; detector temperature: 250 °C; oven program: 70 °C (4 min), 25 °C min⁻¹ to 150 °C, 5 °C min⁻¹ to 250 °C (20 min); retention times: dimethyl 2-diazomalonate 7.8 min, methyl oleate 23.2 min, cyclopropane **10** 36.8 min.

E) Cyclopropanation of methyl elaidate (7) with DDM

FID detector, Zebron ZB-5HT Inferno column: 30 m × 0.25 mm × 0.25 μ m; helium as carrier gas; injector temperature: 280 °C; detector temperature: 250 °C; oven program: 70 °C (4 min), 25 °C min⁻¹ to 150 °C, 5 °C min⁻¹ to 250 °C (20 min); retention times: dimethyl 2-diazomalonate 7.8 min, methyl elaidate 23.4 min, cyclopropane **11** 35.4 min.

F) Reduction of the *trans* cyclopropane (2) to product 12

FID detector, Zebron ZB-5HT Inferno column: 30 m × 0.25 mm × 0.25 μ m; helium as carrier gas; injector temperature: 280 °C; detector temperature: 250 °C; oven program: 70 °C (4 min), 25 °C min⁻¹ to 150 °C, 5 °C min⁻¹ to 250 °C (20 min); retention times: *trans* cyclopropane **2** 32.5 min, diol **12** 29.4 min.

G) Reduction of the *cis* cyclopropane (3) to product 13

FID detector, Zebron ZB-5HT Inferno column: 30 m × 0.25 mm × 0.25 μ m; helium as carrier gas; injector temperature: 280 °C; detector temperature: 250 °C; oven program: 70 °C (4 min), 25 °C min⁻¹ to 150 °C, 5 °C min⁻¹ to 250 °C (20 min); retention times: *cis* cyclopropane **3** 32.3 min, diol **13** 30.7 min.

H) Reduction of the cyclopropanes (8+9) to products 14 and 15

FID detector, Zebron ZB-5HT Inferno column: 30 m × 0.25 mm × 0.25 μ m; helium as carrier gas; injector temperature: 280 °C; detector temperature: 250 °C; oven program: 70 °C (4 min), 25 °C min⁻¹ to 150 °C, 5 °C min⁻¹ to 250 °C (20 min); retention times: cyclopropanes **8+9** 32.4 min, diols **14+15** 29.4 min.

I) Reduction of the cyclopropane 10 to the triol 16

FID detector, Zebron ZB-5HT Inferno column: 30 m × 0.25 mm × 0.25 µm; helium as carrier gas; injector temperature: 280 °C; detector temperature: 250 °C; oven program: 70 °C (4 min), 25 °C min⁻¹ to 150 °C, 5 °C min⁻¹ to 250 °C (20 min); retention times: cyclopropane **10** 36.8 min, triol **16** 20.6 min.

