Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Enantioselective Barbier-type Allylation of Ketones Using Allyl halide and Indium in Water

Shuichi Nakamura,* Yoshichika Hara, Takashi Furukawa, Tsunehisa Hirashita

Department of Frontier Materials, Graduate School of Engineering Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan E-mail: snakamur@nitech.ac.jp; Tel & Fax: 81-52-735-5245

CONTENTS:

General method	
Optimization of reaction condition	
ESI-Mass spectroscopic analysis	
Picture for the reaction mixture	
Characterization data for products	
¹ H NMR analysis for reaction mixture	
References	
¹ H, ¹³ C NMR Spectra	
HPLC Charts	

Experimental Section

General method: All reactions were performed in oven-dried glassware under a positive pressure of nitrogen. Solvents were transferred via syringe and were introduced into the reaction vessels through a rubber septum. All reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Merck silica-gel (60-F254). The TLC plates were visualized with UV light and 7% phosphomolybdic acid or *p*-anisaldehyde in ethanol/heat. Column chromatography was carried out on a column packed with silica-gel 60N spherical neutral size 63-210 μm. The ¹H NMR (300 MHz), ¹⁹F NMR (282 MHz), and ¹³C NMR (75.5 MHz) spectra for solution in CDCl₃ were recorded on Varian Mercury 300. Chemical shifts (δ) are expressed in ppm downfield from internal TMS HPLC analyses were performed on a JASCO LC-2000 plus using 4.6 x 250 mm CHIRALCEL[®] OD-H, OD-3, and OJ-H column. ESI Mass spectra were recorded on a SHIMADZU LCMS-2020 using positive mode. Optical rotations were measured on a JASCO P-2200. Infrared spectra were recorded on a JASCO FT/IR-4600 spectrometer with ZnSe ATR unit. Bis(imidazoline) catalysts were synthesized by published procedures.¹

Optimization of reaction conditions:

Surfactant:

a) CTAB : Cetrimonium bromide

Reagent ratio:

O Ph	Br. +) –	Pybim 4a (10 m In powder (Y eq SDS (20 mol%) H ₂ O, r.t., Time	ol%) uiv.) (h)	OH Ph
	(X e	equiv.)			
Entry	X eq.	Y eq.	Time (h)	Yield (%)	Ee (%)
1	3.0	1.0	36	80	16
2	3.0	2.0	2	91	24
3	3.0	3.0	0.5	99	16
4	3.0	5.0	0.5	90	15
5	2.0	2.0	2	70	17

ESI-Mass spectroscopic analysis:

In order to clarify the assumed reaction mechanism, we also investigated some other spectroscopic analysis. The ESI-Mass spectroscopic analysis of complex A; (**2b**, **4a**, In, and NaI in a 3:0.1:2:3 ratio in H_2O , cation mode)

Picture for the reaction mixture:

Start

Finish

Characterization data for products:

(R)-2-(3-Bromophenyl)pent-4-en-2-ol (3a)

Br Br

water (1.0 mL) at 0 °C. After 18 h, the product was extracted with CH_2Cl_2 , and the combined organic layer was purified through silica gel column chromatography (AcOEt/hexane =1/9) to give **3a** (25.8 mg, 99%, 86% ee) as colorless oil.

 $[\alpha]_D^{25}$ +39.1 (*c* 0.35, CHCl₃, 86% ee) (lit.^{2a} $[\alpha]_D^{25}$ +34.1 (*R*) (*c* 1.03, CHCl₃, 89% ee)); ¹H NMR (300 MHz, CDCl₃) δ 1.52 (s, 3H, CH₃), 2.11 (s, 1H, OH), 2.44-2.25 (m, 1H, CH₂), 2.62-2.69 (m, 1H, CH₂), 5.13-5.17 (m, 2H, CH₂), 5.56-5.64 (m, 1H, CH), 7.18-7.46 (m, 1H, Ar), 7.33-7.38 (m, 2H, Ar), 7.61 (s, 1H, Ar); ¹³C NMR (75.5 MHz, CDCl₃) δ 29.9, 48.4, 73.3, 105.0, 120.1, 122.6, 123.5, 128.2, 129.8, 129.8, 133.1, 150.1; HPLC (DAICEL CHIRALCEL OD-H, hexane:*i*PrOH = 97:3, 1.0 mL/min) t_R = 8.1 min (minor), t_R = 9.2 min (major).

(*R*)-2-Phenylpent-4-en-2-ol (3b)

OH Acetophenone (12 µL, 0.10 mmol) and allyl bromide (26 µL, 0.30 mmol) were added to a solution of *t*BuCO-Pybim **4a** (6.9 mg, 0.01 mmol), indium powder (22.8 mg, 0.20 mmol), and sodium iodide (58.4 mg, 0.39 mmol) in pure water (1.0 mL) at 0 °C. After 18 h, the product was extracted with CH₂Cl₂, and the combined organic layer was purified through silica gel column chromatography (AcOEt/hexane =1/9) to give **3b** (13.7 mg, 86%, 65% ee) as colorless oil. $[\alpha]_D^{25}$ +26.7 (*c* 0.48, CHCl₃, 70% ee) (lit.^{2b} $[\alpha]_D^{25}$ +37.6 (*R*) (*c* 1.52, CHCl₃, 82% ee)); ¹H NMR (300 MHz, CDCl₃) δ 1.55 (s, 3H, CH₃), 2.08 (s, 1H, OH), 2.50-2.54 (m, 1H, CH₂), 2.69-2.73 (m, 1H, CH₂),

5.11-5.17 (m, 2H, CH₂), 5.58-5.66 (m, 1H, CH), 7.25-7.26 (m, 1H, Ar), 7.27-7.35 (m, 2H, Ar), 7.37-7.56 (m, 2H, Ar); ¹³C NMR (75.5 MHz, CDCl₃) δ 29.9, 48.4, 73.6, 119.6, 124.7, 126.6, 128.2, 133.6, 147.6; HPLC (DAICEL CHIRALCEL OJ-H, hexane:*i*PrOH = 97:3, 1.0 mL/min) t_R = 10 min (major), t_R = 12 min (minor).

(R)-2-(3-Fluorophenyl)pent-4-en-2-ol (3c)

CL

3'-Fluoroacetophenone (12 μ L, 0.10 mmol) and allyl bromide (26 μ L, 0.30 mmol) were added to a solution of *t*BuCO-Pybim **4a** (6.9 mg, 0.01 mmol), indium powder (22.8 mg, 0.20 mmol), and sodium iodide (58.4 mg, 0.39 mmol) in pure water (1.0

mL) at 0 °C. After 18 h, the product was extracted with CH_2Cl_2 , and the combined organic layer was purified through silica gel column chromatography (AcOEt/hexane =1/9) to give **3c** (16.0 mg, 89%, 80% ee) as colorless oil.

 $[\alpha]_D^{25}$ +40.0 (*c* 0.41, CHCl₃, 80% ee) (lit.^{2c} $[\alpha]_D^{25}$ -54.9 (*S*) (*c* 1.2, CHCl₃, 97% ee)); ¹H NMR (300 MHz, CDCl₃) δ 1.53 (s, 3H, CH₃), 2.14 (s, 1H, OH), 2.44-2.52 (m, 1H, CH₂), 2.63-2.70 (m, 1H, CH₂), 5.12-5.17 (m, 2H, CH₂), 5.56-5.61 (m, 1H, CH), 6.90-6.95 (m, 1H, Ar), 7.17-7.19 (m, 2H, Ar), 7.20-7.31 (m, 1H, Ar); ¹³C NMR (75.5 MHz, CDCl₃) δ 29.9, 48.3, 73.4, 112.0 (d, *J* = 15.0 Hz), 113.3 (d, *J* = 14.1 Hz), 120.3 (d, *J* = 1.7 Hz), 129.6 (d, *J* = 5.6 Hz), 133.2, 150.5 (d, *J* = 4.5 Hz), 161.3, 164.5; HPLC (DAICEL CHIRALCEL OJ-H, hexane:*i*PrOH = 97:3, 1.0 mL/min) t_R = 8.2 min (major), t_R = 8.6 min (minor).

(R)-2-(3-Chlorophenyl)pent-4-en-2-ol (3d)

OH 3'-Chloroacetophenone (13 μ L, 0.10 mmol) and allyl bromide (26 μ L, 0.30 mmol) were added to a solution of *t*BuCO-Pybim **4a** (6.9 mg, 0.01 mmol), indium powder (22.8 mg, 0.20 mmol), and sodium iodide (58.4 mg, 0.39 mmol) in pure

water (1.0 mL) at 0 °C. After 48 h, the product was extracted with CH_2Cl_2 , and the combined organic layer was purified through silica gel column chromatography (AcOEt/hexane =5/95) to give **3d** (13.5 mg, 76%, 76% ee) as colorless oil.

[α]_D²⁵ +51.2 (*c* 0.20, CHCl₃, 76% ee) (lit.^{2b} [α]_D²⁵ +41.6 (*R*) (*c* 1.18, CHCl₃, 82% ee)); ¹H NMR (300 MHz, CDCl₃) δ 1.53 (s, 3H, CH₃), 2.09 (s, 1H, OH), 2.44-2.52 (m, 1H, CH₂), 2.62-2.69 (m, 1H, CH₂), 5.13-5.17 (m, 2H, CH₂), 5.53-5.64 (m, 1H, CH), 7.73-7.29 (m, 3H, Ar), 7.45 (s, 1H, Ar); ¹³C NMR (75.5 MHz, CDCl₃) δ 29.9, 48.3, 73.4, 120.0, 123.0, 125.3, 126.8, 129.4, 133.1, 134.2, 149.8; HPLC (DAICEL CHIRALCEL OD-H, hexane:*i*PrOH = 97:3, 1.0 mL/min) t_R = 8.6 min (minor), t_R = 9.3 min (major).

(R)-2-(3-Iodophenyl)pent-4-en-2-ol (3e)

3'-Iodoacetophenone (15 μ L, 0.10 mmol) and allyl bromide (26 μ L, 0.30 mmol) were added to a solution of *t*BuCO-Pybim **4a** (6.9 mg, 0.01 mmol), indium powder (22.8 mg, 0.20 mmol), and sodium iodide (58.4 mg, 0.39 mmol) in pure water (1.0

mL) at 0 °C. After 18 h, the product was extracted with CH₂Cl₂, and the combined organic layer was

purified through silica gel column chromatography (AcOEt/hexane =5/95) to give **3e** (31.2 mg, 99%, 89% ee) as colorless oil.

[α]_D²⁵ +25.6 (*c* 0.41, CHCl₃, 89% ee); ¹H NMR (300 MHz, CDCl₃) δ 1.51 (s, 3H, *CH*₃), 2.13 (s, 1H, *OH*), 2.45-2.50 (m, 1H, *CH*₂), 2.61-2.67 (m, 1H, *CH*₂), 5.12-5.16 (m, 2H, *CH*₂), 5.55-5.64 (m, 1H, *CH*), 7.06 (dd, *J* = 7.5, 7.8 Hz, 2H, *Ar*), 7.37 (d, *J* = 7.5 Hz, 1H, *Ar*), 7.57 (d, *J* = 7.8 Hz, 1H, *Ar*), 7.81 (s, 1H, *Ar*); ¹³C NMR (75.5 MHz, CDCl₃) δ 29.9, 48.4, 73.2, 94.6, 120.1, 124.2, 130.0, 133.1, 134.1, 135.7, 150.1; IR (ATR) 3540, 3431, 3073, 3000, 2976, 2929, 1687, 1060, 957, 916, 698 cm⁻¹; MS (ESI) Calcd for $C_{11}H_{13}INaO$ (M+Na) 310.9909; Found 310.9893; HPLC (DAICEL CHIRALPAK IA, hexane:*i*PrOH = 97:3, 1.0 mL/min) t_R = 8.9 min (major), t_R = 9.7 min (minor).

(R)-2-(2-Bromophenyl)pent-4-en-2-ol (3f)

Br

OH

2'-Bromoacetophenone (13 μL, 0.10 mmol) and allyl bromide (26 μL, 0.30 mmol)
were added to a solution of *t*BuCO-Pybim 4a (6.9 mg, 0.01 mmol), indium powder (22.8 mg, 0.20 mmol), and sodium iodide (58.4 mg, 0.39 mmol) in pure water (1.0

mL) at 0 °C. After 48 h, the product was extracted with CH_2Cl_2 , and the combined organic layer was purified through silica gel column chromatography (AcOEt/hexane =5/95) to give **3f** (9.7 mg, 40%, 59% ee) as colorless oil.

[α]_D²⁵ +25.0 (*c* 0.21, CHCl₃, 59% ee) (lit.^{2d} [α]_D²⁵ -35.7 (*S*) (*c* 1.34, CHCl₃, 97% ee)); ¹H NMR (300 MHz, CDCl₃) δ 1.66 (s, 3H, CH₃), 2.68 (s, 1H, OH), 2.68-2.68 (m, 1H, CH₂), 3.28-3.32 (m, 1H, CH₂), 5.11-5.48 (m, 2H, CH₂), 5.51-5.59 (m, 1H, CH), 7.09-7.13 (m, 1H, Ar), 7.28-7.33 (m, 1H, Ar), 7.60 (d, *J* = 9.0 Hz, 1H, Ar), 7.71 (d, *J* = 9.6 Hz, 1H, Ar); ¹³C NMR (75.5 MHz, CDCl₃) δ 27.2, 45.9, 74.6, 119.4, 120.0, 127.4, 128.3, 128.6, 133.6, 135.0, 145.0; HPLC (DAICEL CHIRALPAK AD-3, hexane:*i*PrOH = 97:3, 1.0 mL/min) t_R = 8.1 min (major), t_R = 9.6 min (minor).

(R)-2-(4-Bromophenyl)pent-4-en-2-ol (3g)

OH

4'-Bromoacetophenone (19.9 mg, 0.10 mmol) and allyl bromide (26 μL, 0.30 mmol) were added to a solution of *t*BuCO-Pybim **4a** (6.9 mg, 0.01 mmol), indium powder (22.8 mg, 0.20 mmol), and sodium iodide (58.4 mg, 0.39 mmol) in pure

Br \sim powder (22.8 mg, 0.20 mmol), and sodium iodide (58.4 mg, 0.39 mmol) in pure water (1.0 mL) at 0 °C. After 48 h, the product was extracted with CH₂Cl₂, and the combined organic layer was purified through silica gel column chromatography (AcOEt/hexane =5/95) to give **3g** (19.1 mg, 78%, 65% ee) as colorless oil.

 $[\alpha]_D^{25}$ +14.8 (*c* 0.30, CHCl₃, 65% ee) (lit.^{2d} $[\alpha]_D^{25}$ -53.6 (*S*) (*c* 1.5, CHCl₃, 97% ee)); ¹H NMR (300 MHz, CDCl₃) δ 1.52 (s, 3H, CH₃), 2.06 (s, 1H, OH), 2.43-2.51 (m, 1H, CH₂), 2.61-2.68 (m, 1H, CH₂), 5.11-5.15 (m, 2H, CH₂), 5.52-5.63 (m, 1H, CH), 7.31 (d, *J* = 8.7 Hz, 2H, *Ar*), 7.45 (d, *J* = 8.7 Hz, 2H, *Ar*); ¹³C NMR (75.5 MHz, CDCl₃) δ 29.9, 48.3, 73.4, 120.0, 120.6, 126.7, 131.2, 133.2, 146.7; HPLC (DAICEL CHIRALCEL OJ-H, hexane:*i*PrOH = 97:3, 1.0 mL/min) t_R = 12.0 min (major), t_R = 13.5 min (minor).

(R)-2-(3-Methoxyphenyl)pent-4-en-2-ol (3h)

MeO $(14 \ \mu L, 0.10 \ mmol)$ and allyl bromide (26 $\mu L, 0.30 \ mmol)$ mmol) were added to a solution of *t*BuCO-Pybim **4a** (6.9 mg, 0.01 mmol), indium powder (22.8 mg, 0.20 mmol), and sodium iodide (58.4 mg, 0.39 mmol)

in pure water (1.0 mL) at 0 °C. After 48 h, the product was extracted with CH_2Cl_2 , and the combined organic layer was purified through silica gel column chromatography (AcOEt/hexane =5/95) to give **3h** (17.6 mg, 92%, 74% ee) as colorless oil.

 $[\alpha]_D^{25}$ +40.1 (*c* 0.41, CHCl₃ 74% ee) (lit.^{2a} $[\alpha]_D^{25}$ +44.8 (*R*) (*c* 1.02, CHCl₃, 93% ee)); ¹H NMR (300 MHz, CDCl₃) δ 1.53 (s, 3H, CH₃), 2.10 (s, 1H, OH), 2.45-2.52 (m, 1H, CH₂), 2.65-2.72 (m, 1H, CH₂), 5.82 (s, 3H, CH₃), 5.12-5.17 (m, 2H, CH), 5.58-5.64 (m, 1H, CH), 6.77-6.99 (m, 1H, Ar), 7.01-7.03 (m, 2H, Ar), 7.25-7.29 (m, 1H, Ar); ¹³C NMR (75.5 MHz, CDCl₃) δ 28.8, 48.3, 73.6, 111.0, 111.7, 117.2, 119.5, 192.2, 133.6, 149.5, 159.4; HPLC (DAICEL CHIRALCEL OJ-H, hexane:*i*PrOH = 97:3, 1.0 mL/min) t_R = 14.8 min (major), t_R = 17.5 min (minor).

(R)-2-(3-Methylphenyl)pent-4-en-2-ol (3i)

3'-Methylacetophenone (14 μ L, 0.10 mmol) and allyl bromide (26 μ L, 0.3 mmol) were added to a solution of *t*BuCO-Pybim **4a** (6.9 mg, 0.01 mmol), indium powder (22.8 mg, 0.20 mmol), and sodium iodide (58.4 mg, 0.39 mmol) in pure water (1.0

mL) at 0 °C. After 18 h, the product was extracted with CH_2Cl_2 , and the combined organic layer was purified through silica gel column chromatography (AcOEt/hexane =5/95) to give **3i** (14.0 mg, 80%, 84% ee), as colorless oil.

 $[\alpha]_D^{25}$ +39.6 (*c* 0.19, CHCl₃, 84% ee) (lit.^{2a} $[\alpha]_D^{25}$ +34.1 (*R*) (*c* 0.86, CHCl₃, 51% ee)); ¹H NMR (300 MHz, CDCl₃) δ 1.54 (s, 3H, CH₃), 2.06 (s, 1H, OH), 2.46 (s, 3H, CH₃), 2.48-2.53 (m, 1H, CH₂), 2.65-2.72 (m, 1H, CH₂), 5.12-5.17 (m, 2H, CH), 5.56-5.69 (m, 1H, CH), 7.06 (s, 1H, Ar), 7.22-7.27 (m, 3H, Ar); ¹³C NMR (75.5 MHz, CDCl₃) δ 21.6, 28.8, 48.4, 73.6, 119.4, 121.8, 125.5, 127.3, 128.1, 133.8,

137.7, 147.6; HPLC (DAICEL CHIRALCEL OJ-H, hexane:*i*PrOH = 97:3, 1.0 mL/min) t_R = 7.7 min (major), t_R = 8.8 min (minor).

(R)-2-(Thiophen-3-yl)pent-4-en-2-ol (3j)

OH

3-Acetylthiophen (12.6 mg, 0.10 mmol) and allyl bromide (26 μL, 0.30 mmol) were
added to a solution of *t*BuCO-Pybim 4a (6.9 mg, 0.01 mmol), indium powder (22.8 mg, 0.20 mmol), and sodium iodide (58.4 mg, 0.39 mmol) in pure water (1.0 mL) at 0

°C. After 24 h, the product was extracted with CH_2Cl_2 , and the combined organic layer was purified through silica gel column chromatography (AcOEt/hexane =5/95) to give **3j** (15.2 mg, 90%, 55% ee) as colorless oil.

 $[\alpha]_D^{25}$ +20.3 (*c* 0.24, CHCl₃ 55% ee) (lit.^{2d} $[\alpha]_D^{25}$ -49.4 (*S*) (*c* 0.99, CHCl₃, 99% ee)); ¹H NMR (300 MHz, CDCl₃) δ 1.54 (s, 3H, CH₃), 2.08 (s, 1H, OH), 2.46-2.53 (m, 1H, CH₂), 2.61-2.68 (m, 1H, CH₂), 5.12-5.16 (m, 2H, CH), 5.63-5.68 (m, 1H, CH), 7.07 (s, 1H, Ar), 7.16-7.17 (m, 1H, Ar), 7.26-7.29 (m, 1H, Ar); ¹³C NMR (75.5 MHz, CDCl₃) δ 29.5, 48.3, 72.7, 119.4, 119.5, 125.6, 125.9, 133.6; HPLC (DAICEL CHIRALCEL OD-3, hexane:*i*PrOH = 99:1, 0.8 mL/min) t_R = 20.0 min (major), t_R = 21.5 min (minor).

(R)-2-(Naphthalen-2-yl)pent-4-en-2-ol (3k)

2-Acetonaphthone (17.0 mg, 0.10 mmol) and allyl bromide (26 μ L, 0.30 mmol) were added to a solution of *t*BuCO-Pybim **4a** (6.9 mg, 0.01 mmol), indium powder (22.8 mg, 0.20 mmol), and sodium iodide (58.4 mg, 0.39 mmol) in pure

water (1.0 mL) at 0 °C. After 24 h, the product was extracted with CH_2Cl_2 , and the combined organic layer was purified through silica gel column chromatography (AcOEt/hexane =5/95) to give **3k** (19.9 mg, 94%, 71% ee) as colorless oil.

[α]_D²⁵ +47.2 (*c* 0.54, CHCl₃, 71% ee) (lit.^{2b} [α]_D²⁵ -39.8 (*S*) (*c* 0.92, CHCl₃, 84% ee)); ¹H NMR (300 MHz, CDCl₃) δ 1.64 (s, 3H, CH₃), 2.20 (s, 1H, OH), 2.59-2.62 (m, 1H, CH₂), 2.80-2.83 (m, 1H, CH₂), 5.10-5.19 (m, 2H, CH), 5.60-5.63 (m, 1H, CH), 7.48-7.55 (m, 3H, *Ar*), 7.84-7.92 (m, 4H, *Ar*); ¹³C NMR (75.5 MHz, CDCl₃) δ 30.0, 48.4, 73.8, 119.6, 121.7, 123.2, 123.5, 125.7, 126.1, 1127.5, 147.9, 128.1, 132.2, 133.2, 133.6, 145.0; HPLC (DAICEL CHIRALCEL OJ-H, hexane:*i*PrOH = 97:3, 1.0 mL/min) t_R = 24.2 min (minor), t_R = 26.8 min (major).

(R)-1,1,1-Trifluoro-2-phenylpent-4-en-2-ol (3l)

OH 2,2,2-Trifuloroacetophenone (14 μ L, 0.10 mmol) and allyl bromide (26 μ L, 0.30 mmol) Philic F₃ were added to a solution of *t*BuCO-Pybim **4a** (6.9 mg, 0.01 mmol), indium powder (22.8 mg, 0.20 mmol), and sodium iodide (58.4 mg, 0.39 mmol) in pure water (1.0 mL) at 0 °C.

After 18 h, the product was extracted with CH_2Cl_2 , and the combined organic layer was purified through silica gel column chromatography (AcOEt/hexane =1/9) to give **3l** (16.4 mg, 77%, 86% ee) as colorless oil.

 $[\alpha]_D^{25}$ +46.2 (*c* 0,15, Benzene, 86% ee), (lit.^{2c} $[\alpha]_D^{25}$ -46.0 (*S*) (*c* 0.34, Benzene, 70% ee)); ¹H NMR (300 MHz, CDCl₃) δ 2.61 (s, 1H, OH), 2.83-2.88 (m, 1H, CH₂), 2.96-3.02 (m, 1H, CH₂), 5.21-5.28 (m, 2H, CH), 5.49-5.60 (m, 1H, CH), 7.25-7.41 (m, 3H, Ar), 7.56-7.59 (m, 2H, Ar); ¹³C NMR (75.5 MHz, CDCl₃) δ 40.3, 122.1, 123.4, 126.4, 127.2, 128.4, 128.6, 130.4, 163.8; HPLC (DAICEL CHIRALCEL OJ-H, hexane:*i*PrOH = 97:3, 1.0 mL/min) t_R = 15.8 min (major), t_R = 19.9 min (minor).

¹H NMR analysis for reaction mixture:

In order to clarify the allylindium intermediate, we investigated NMR analysis. ¹H NMR spectrum of the ally bromide in D_2O showed a peak on 3.90 ppm (**spectrum 1**), and the mixture of allyl bromide, indium, NaI and pybim **2a** in D_2O showed new peak on 2.85 ppm (**spectrum 2**).

References

- a) S. Nakamura, M. Ohara, Y. Nakamura, N. Shibata, T. Toru, *Chem. Eur. J.* 2010, *16*, 2360–2362; b)
 M. Ohara, Y. Hara, T. Ohnuki, S. Nakamura, *Chem. Eur. J.* 2014, *20*, 8848–8851.
- 2) a) X.-R. Huang, C. Chen, G.-H. Lee, S.-M. Peng, Adv. Synth. Catal. 2009, 351, 3089–3095; b) Y.-C. Teo, J.-D. Goh, T.-P. Loh, Org. Lett. 2005, 7, 2743–2745; c) T.-P. Loh, J.-R. Zhou X.-R. Li, Tetrahedron Lett. 1999, 40, 9333–9336; d) D. S. Barnett, P. N. Moquist, S. E. Schaus, Angew. Chem. Int. Ed. 2009, 48, 8679–8682.

¹H and ¹³C NMR

(*R*)-3a

Racemic-3a

Pea k	tR (min)	Area (%)	
1	8.2	7.1	
2	9.2	92.9	

Pea k	tR (min)	Area (%)
1	7.8	49.9
2	8.8	50.1

3b-HPLC DAICEL CHIRALCEL OJ-H hexane:*i*PrOH = 97:3, 1.0 mL/min

(*R*)-3b

Pea k	tR (min)	Area (%)
1	10.9	82.8
2	14.2	17.2

Pea k	tR (min)	Area (%)
1	9.9	50.1
2	11.3	49.9

(*R*)-3c

Racemic-3c

Pea k	tR (min)	Area (%)
1	8.2	90.1
2	8.6	9.9

Pea k	tR (min)	Area (%)
1	7.8	50.2
2	8.2	49.8

(*R*)-3d

Pea k	tR (min)	Area (%)
1	7.8	10.9
2	8.3	89.1

Pea k	tR (min)	Area (%)
1	7.8	49.9
2	8.5	50.1

(*R*)-3e

Racemic-3e

Pea k	tR (min)	Area (%)
1	8.9	94.3
2	9.7	5.7

Pea k	tR (min)	Area (%)
1	8.7	49.9
2	9.5	50.1

3f-HPLC DAICEL CHIRALPAK AD-3 hexane:*i*PrOH = 97:3, 1.0 mL/min

(*R*) 3f

	1			2		
v		-)	-1
5	8.0	8.5	9.0	9.5	10.0	10.5

Racemic-3f

Pea k	tR (min)	Area (%)
1	8.1	79.2
2	9.6	20.8

Pea k	tR (min)	Area (%)
1	8.0	50.1
2	9.4	49.9

(*R*)-3g

Pea k	tR (min)	Area (%)
1	12.0	82.2
2	13.5	17.8

Pea k	tR (min)	Area (%)
1	10.4	50.1
2	12.4	49.9

(*R*)-3h

Peak	tR (min)	Area (%)
1	14.8	87.0
2	17.5	13.0

Racemic-3h

Peak	tR (min)	Area (%)
1	13.2	50.1
2	16.8	49.9

(*R*)-3i

Racemic-3i

Pea k	tR (min)	Area (%)
1	7.7	92.0
2	8.8	8.0

Pea k	tR (min)	Area (%)
1	7.9	50.1
2	9.1	49.9

3j-HPLC DAICEL CHIRALCEL OD-3 hexane:*i*PrOH = 99:1, 0.8 mL/min

(*R*)-3j

Peak	tR (min)	Area (%)
1	20.0	77.3
2	21.5	22.7

Racemic-3j

Peak	tR (min)	Area (%)
1	20.3	50.1
2	21.7	49.9

(*R*)-3k

Racemic-3k

Pea k	tR (min)	Area (%)
1	26.5	14.6
2	29.1	85.4

Pea k	tR (min)	Area (%)
1	19.5	49.8
2	21.5	50.2

(*R*)-31

Peak	tR (min)	Area (%)
1	15.8	93.2
2	19.9	6.8

Racemic-31

Peak	tR (min)	Area (%)
1	14.1	50.1
2	17.7	49.9