| 1  | <b>Oxidation modification of Ru-based catalyst for</b>                                                                                    |  |  |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 2  | acetylene hydrochlorination                                                                                                               |  |  |  |  |  |
| 3  | Baochang Man, <sup>a, b</sup> Haiyang Zhang, <sup>*a, b</sup> Jinli Zhang, <sup>*a, c</sup> Xing Li, <sup>a, b</sup> Na Xu, <sup>a,</sup> |  |  |  |  |  |
| 4  | <sup>b</sup> Hui Dai, <sup>c</sup> Mingyuan Zhu <sup>a, b</sup> and Bin Dai <sup>a, b</sup>                                               |  |  |  |  |  |
| 5  |                                                                                                                                           |  |  |  |  |  |
| 6  | Table of contents:                                                                                                                        |  |  |  |  |  |
| 7  | Table S1 The catalytic performance of some potential non-mercury catalysts recently                                                       |  |  |  |  |  |
| 8  | reported in the literatures.                                                                                                              |  |  |  |  |  |
| 9  | Table S2 The relative content of the elements in the catalysts, determined by XPS                                                         |  |  |  |  |  |
| 10 | spectra.                                                                                                                                  |  |  |  |  |  |
| 11 | Figure S1. The schematic diagram of four different routes to synthesize Ru-based                                                          |  |  |  |  |  |
| 12 | catalysts.                                                                                                                                |  |  |  |  |  |
| 13 | Figure S2. FT-IR spectra of the fresh and used Ru/AC catalysts.                                                                           |  |  |  |  |  |
| 14 | Figure S3. Nitrogen adsorption-desorption isotherms of the catalysts.                                                                     |  |  |  |  |  |
| 15 | Figure S4. TG curves of the fresh and used catalysts recorded in air atmosphere.                                                          |  |  |  |  |  |
| 16 | Figure S5. High-resolution XPS spectra of Ru 3p for the fresh and used Ru-based                                                           |  |  |  |  |  |
| 17 | catalysts.                                                                                                                                |  |  |  |  |  |
| 18 | Figure S6. XPS spectra of C1s for the fresh catalysts.                                                                                    |  |  |  |  |  |
|    |                                                                                                                                           |  |  |  |  |  |

\* Corresponding author Tel: 86-993-2057-277; Fax: +86 993 2057210; E-mail address: <u>zhy198722@163.com</u> (H.Y. Zhang), zhangjinli@tju.edu.cn (J.L. Zhang)

<sup>&</sup>lt;sup>a</sup> School of Chemistry and Chemical Engineering of Shihezi University, Shihezi, Xinjiang 832000, PR China.

<sup>&</sup>lt;sup>b</sup> Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi, Xinjiang 832000, PR China.

<sup>&</sup>lt;sup>c</sup> School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China.

- 19 Figure S7. TEM images of the fresh and used catalysts: (a) Fresh Ru/AC, (b) Used
- 20 Ru/AC, (c) Fresh Ru/AC-O, (d) Used Ru/AC-O, (e) Fresh (Ru/AC)-O, (f) Used
- 21 (Ru/AC)-O, (g) Fresh Ru-O/AC-O, (h) Used Ru-O/AC-O.

| Catalyst                                                   | Composition of catalysts      | Reaction conditions                                                           | Initial catalytic activity <sup>a</sup> | Deactivation rate                 |
|------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------|
|                                                            |                               |                                                                               |                                         | (% h <sup>-1</sup> ) <sup>b</sup> |
| Mo <sub>2</sub> N/AC [1]                                   | 1.5 wt% MoN                   | $T = 180 \text{ °C. GHSV}(C_2H_2) = 30 \text{ h}^{-1},$                       | $X_A = 80.0\%, Svc_M > 90.0\%$          | 4.28                              |
|                                                            |                               | $V_{HCl}/V_{C2H2} = 1.15$                                                     |                                         |                                   |
| Au-Bi/C <sup>[2]</sup>                                     | 0.30  wt% Au, n(Bi)/n(Au) = 3 | T = 180 °C. GHSV( $C_2H_2$ ) = 600 h <sup>-1</sup> ,                          | $X_A = 87.0\%, Svc_M > 99.0\%$          | 0.500                             |
|                                                            |                               | $\mathbf{V}_{\mathrm{HCl}}/\mathbf{V}_{\mathrm{C2H2}} = 1.1$                  |                                         |                                   |
| PdCl <sub>2</sub> -KCl-LaCl <sub>3</sub> /C <sup>[3]</sup> | 0.9 wt% Pd, 0.2 wt% KCl, 0.2  | T = 120-180 °C. GHSV( $C_2H_2$ ) = 120 h <sup>-1</sup> ,                      | $X_A = 98.0\%, Svc_M > 99.5\%$          | 10.500                            |
|                                                            | wt% LaCl <sub>3</sub>         | $V_{\rm HCl}/V_{\rm C2H2} = 1.15$                                             |                                         |                                   |
| Z4M1 <sup>[4]</sup>                                        | 1.5 at% N                     | $T = 180 \text{ °C. } \text{GHSV}(\text{C}_2\text{H}_2) = 50 \text{ h}^{-1},$ | $X_A = 60.0\%$ , $Svc_M > 90.0\%$       | 0.300                             |
|                                                            |                               | $V_{\rm HCl}/V_{\rm C2H2} = 1.15$                                             |                                         |                                   |
| Ru-in-CNT <sup>[5]</sup>                                   | 1 wt% Ru                      | $T = 170 \text{ °C. } \text{GHSV}(\text{C}_2\text{H}_2) = 90 \text{ h}^{-1},$ | $X_A = 99.8\%, Svc_M > 99.0\%$          | 0.480                             |
|                                                            |                               | $V_{HCl}/V_{C2H2} = 1.1$                                                      |                                         |                                   |
| Ru-O/AC-O                                                  | 1 wt% Ru                      | T = 180 °C. GHSV( $C_2H_2$ ) = 180 h <sup>-1</sup> ,                          | $X_A = 99.6\%, Svc_M > 99.9\%$          | 0.275                             |
|                                                            |                               | $V_{\rm HCl}/V_{\rm C2H2} = 1.15$                                             |                                         |                                   |

## 22 Table S1 The catalytic performance of some potential non-mercury catalysts recently reported in the literatures.

23 <sup>a</sup> X<sub>A</sub> represents the initial conversion of acetylene and S<sub>VCM</sub> represents the selectivity to VCM of the catalyst.

24 <sup>b</sup> Deactivation rate was defined as (the initial maximum C<sub>2</sub>H<sub>2</sub> conversion – the final C<sub>2</sub>H<sub>2</sub> conversion)/(deactivation period, h)

| Catalysts       | Ru (wt%) | O (wt%) | C (wt%) | Others (wt%) |
|-----------------|----------|---------|---------|--------------|
| Fresh AC        |          | 13.42   | 85.75   | 0.83         |
| Used AC         |          | 5.68    | 93.53   | 0.79         |
| Fresh AC-O      |          | 22.33   | 77.05   | 0.62         |
| Used AC-O       |          | 15.05   | 84.37   | 0.58         |
| Fresh Ru/AC     | 0.98     | 11.57   | 86.98   | 0.47         |
| Used Ru/AC      | 0.92     | 6.46    | 92.23   | 0.39         |
| Fresh Ru/AC-O   | 0.96     | 18.43   | 80.02   | 0.59         |
| Used Ru/AC-O    | 0.91     | 13.51   | 85.06   | 0.52         |
| Fresh (Ru/AC)-O | 0.95     | 19.32   | 79.01   | 0.72         |
| Used (Ru/AC)-O  | 0.93     | 14.85   | 83.56   | 0.66         |
| Fresh Ru-O/AC-O | 0.97     | 20.29   | 78.28   | 0.46         |
| Used Ru-O/AC-O  | 0.95     | 17.58   | 81.09   | 0.38         |

**Table S2** The relative content of the elements in the catalysts, determined by XPS spectra.



29 Figure S1. The schematic diagram of four different routes to synthesize Ru-based catalysts.





Figure S3. Nitrogen adsorption-desorption isotherms of the fresh (a) catalysts and used (b) catalysts.



Figure S4. TG curves of fresh and used catalysts recorded in air atmosphere.





**Figure S5.** High-resolution XPS spectra of Ru 3p for the fresh and used Ru-based catalysts.





Figure S6. XPS spectra of C 1s for the fresh catalysts.



- Figure S7. TEM images of the fresh and used catalysts: (a) Fresh Ru/AC, (b) Used Ru/AC, (c)
- Fresh Ru/AC-O, (d) Used Ru/AC-O, (e) Fresh (Ru/AC)-O, (f) Used (Ru/AC)-O, (g) Fresh Ru-O/AC-O, (h) Used Ru-O/AC-O.

## 55 References

- 56 [1] H. Dai, M. Zhu, H. Zhang, F. Yu, C. Wang and B. Dai, J. Ind. & Eng. Chem.,
- 57 2017.
- 58 [2] K. Zhou, J. Jia, C. Li, H. Xu, J. Zhou, G. Luo, F. Wei, Green Chem., 2015, 17,
- *356-364*.
- 60 [3] Q. Song, S. Wang, B. Shen, J. Zhao, Pet. Sci. Technol., 2010, 28, 1825-1833.
- 61 [4] X. Li, J. Zhang and W. Li, J. Ind. & Eng. Chem., 2016, 44, 146-154.
- 62 [5] G. Li, W. Li, H. Zhang, Y. Pu, M. Sun and J. Zhang, Rsc Adv., 2014, 5, 9002-9008.