Electronic Supplementary Information

A peptide-decorated and curcumin-loaded mesoporous silica nanomedicine for effectively overcoming multidrug resistance in cancer cell

Xian Sun,^{a†} Yingping Luo,^{a†} Liwei Huang,^a Bo-Yang Yu^{a*} and Jiangwei Tian^{a,b*}

^aState Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, P.R. China. Fax/Tel.: +86 25 86185158; Email: boyangyu59@163.com; jwtian@cpu.edu.cn

^bCollege of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, 250014, P.R. China

[†]Both authors contributed equally to this work.

Sample	zeta potential (mV)
MSN-41	-18.42
MSN-NH ₂	21.15
MSN-alkyne	2.12
MSN-Pep	12.43
DOX/CUR@MSN-Pep	12.05

Table S1. Zeta potentials of different nanocarriers in PBS

Figure S1. FT-IR spectra of MSN, MSNs-NH₂, MSNs-alkyne, and MSN-Pep.

Figure S2. UV-VIS absorption spectra of MSNs, MSNs–NH₂, MSNs–alkyne, and MSN-Pep.

Figure S3. BET nitrogen adsorption/desorption isotherms (A) and BJH pore size distribution (B) of MSN and MSN-Pep.

Figure S4. (A) TEM image of blank MSN. Scale bar: 20 nm. (B) Size distribution ofblankMSNmeasuredbyDLS.

Figure S5. (A) The absorption spectra of DOX with different concentrations. (B) The standard curve of DOX absorbance value at 488 nm. The obtained standard curve is y=0.01902x+0.00106 (y: absorbance value at 488 nm; x: concentration of DOX, $R^2=0.99879$). (C) The absorption spectra of CUR with different concentrations. (D) The standard curve of CUR absorbance value at 425 nm. The obtained standard curve is y=0.02389x+0.00586 (y: absorbance value at 425 nm; x: concentration of DOX, $R^2=0.99767$).

Figure S6. Confocal fluorescence images of MCF-7 cells incubated with free DOX, DOX+CUR, DOX@MSN-Pep and DOX/CUR@MSN-Pep for 4 h. Scale bar: 10 μm.

Figure S7. Confocal fluorescence images of MCF-7/ADR cells incubated with DOX/CUR@MSN-Pep (without RGDS), DOX/CUR@MSN-Pep for 4 h and the block group pretreated with excessive free RGD, followed by incubation with DOX/CUR@MSN-Pep for 4 h. Scale bar: 10 µm.

Figure S8. Confocal fluorescence images of MCF-7/ADR cells stained with LysoTracker Deep Red (green) and Hoechst 33342 (blue) after cells were incubated DOX/CUR@MSN-Pep for 1, 2, 4, 6, 12 and 24 h, respectively. Scale bar: 10 μm.

Figure S9. MTT assays of MCF-7 (A) and MCF-7/ADR (B) cells after incubation with CUR. The IC₅₀ values for MCF-7 and MCF-7/ADR cells are measured to be 22.93 μ M and 41.68 μ M, respectively. Data are means ± SD (n = 5).

Figure S10. MTT assays of MCF-7 and MCF-7/ADR cells after exposure to (A) blank MSN, (B) MSN–NH₂, (C) MSNs–alkyne and (D) MSN-Pep nanocarrier at various concentrations. Data are means \pm SD (n = 5).