Supporting Information for

Rhodium-Catalyzed Malonation of 2-Aryllquinazolines with

2-Diazomalonates: Double C-H Functionalization

Zhipeng Zhang, Xin Jiang, Zhihong Deng, Heng Wang, Jian Huang and Yiyuan Peng*

^aKey Laboratory of Small Functional Organic Molecule, Ministry of Education and Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang, Jiangxi 330022, China

^bCAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 330022, PR China

1.	General information	S2
2.	The Optimization of Reaction Conditions	S2-S3
3.	Typical procedure for Rhodium-Catalyzed Malonation of 2-Phenylqu	inazolines
	with 2-Diazomalonates and characterization data	S3-S12
4.	¹ H and ¹³ C NMR spectra of compound	S13-S32
5.	Track record ¹ HNMRs spectra at temperature changing from	25℃ to
	-20°C	.833-837
6.	X-ray illustration of compound 3a and 3k	S38

1. General Information

Unless otherwise stated, all commercial reagents were used as received. All solvents were dried and distilled according to standard procedures. Flash column chromatography was performed using silica gel (60-Å pore size, 32-63 μ m, standard grade). Analytical thin-layer chromatography was performed using glass plates pre-coated with 0.25 mm 230-400 mesh silica gel impregnated with a fluorescent indicator (254 nm). Thin layer chromatography plates were visualized by exposure to ultraviolet light. Organic solutions were concentrated on rotary evaporators at ~20 Torr at 25-40 °C. Nuclear magnetic resonance (NMR) spectra are recorded in parts per million from internal tetramethylsilane on the δ scale. ¹H and ¹³C NMR spectra were recorded in CDCl₃ on a Bruker DRX - 400 spectromete operating at 400 MHz and 100 MHz, respectively. All chemical shift values are quoted in ppm and coupling constants quoted in Hz. High resolution mass spectrometry (HRMS) spectra were obtained on a micrOTOF II Instrument.

2. The Optimization of Reaction Conditions

Entry	Catalyst	Additive	Salvant	↓ °○	2a	Yield
Entry	(mol %)	(mol %)	Solvent	ĩC	(eq)	(%) ^c
1	$[Cod*Rh(BF_4)_2](5)$	CF ₃ COOAg(10)	EtOH	75	2	Trace
2	$RhCl_3 \cdot H_2O(5)$	CF ₃ COOAg(10)	EtOH	75	2	Trace
3	$[Cp*RhCl_2]_2(5)$	CF ₃ COOAg(10)	EtOH	75	2	20
4	$[Cp*RhCl_2]_2(5)$	AgOAc(10)	EtOH	75	3	0
5	$[Cp*RhCl_2]_2(5)$	$AgNO_3(10)$	EtOH	75	3	0
6	$[Cp*RhCl_2]_2(5)$	$AgBF_4(10)$	EtOH	75	3	45
7	$[Cp*RhCl_2]_2(5)$	AgOTf(10)	EtOH	75	3	72
8	$[Cp*RhCl_2]_2(1)$	AgOTf(5)	EtOH	75	3	83
9	$[Cp*RhCl_2]_2(2)$	AgOTf(10)	EtOH	75	3	82
10	$[Cp*RhCl_2]_2(3)$	AgOTf(15)	EtOH	75	3	77
11	$[Cp*RhCl_2]_2(4)$	AgOTf(20)	EtOH	75	3	75
12	$[Cp*RhCl_2]_2(5)$	AgOTf(25)	EtOH	75	3	72
13	$[Cp*RhCl_2]_2(1)$	AgOTf(5)	EtOH	75	1	47
14	$[Cp*RhCl_2]_2(1)$	AgOTf(5)	EtOH	75	2	54
15	$[Cp*RhCl_2]_2(1)$	AgOTf(5)	EtOH	75	3	83

16	$[Cp*RhCl_2]_2(1)$	AgOTf(5)	EtOH	75	4	83
17	$[Cp*RhCl_2]_2(1)$	AgOTf(5)	EtOH	r.t.	3	NR
18	$[Cp*RhCl_2]_2(1)$	AgOTf(5)	EtOH	45	3	39
19	$[Cp*RhCl_2]_2(1)$	AgOTf(5)	EtOH	65	3	64
20	$[Cp*RhCl_2]_2(1)$	AgOTf(5)	EtOH	75	3	84
21	$[Cp*RhCl_2]_2(1)$	AgOTf(5)	MeOH	75	3	56
22	$[Cp*RhCl_2]_2(1)$	AgOTf(5)	THF	75	3	20
23	$[Cp*RhCl_2]_2(1)$	AgOTf(5)	DCM	75	3	17
24	$[Cp*RhCl_2]_2(1)$	AgOTf(5)	DCE	75	3	65
25	$[Cp*RhCl_2]_2(1)$	AgOTf(5)	1,4-Dioxane	75	3	14
26 ^b	$[Cp*RhCl_2]_2(1)$	AgOTf(5)	EtOH	75	3	83

^{*a*} Reaction conditions: all reaction were performed with 2,4-diphenylquinazoline **1a** (0.2 mmol), diethyl 2-diazomalonate **2a**, [Rh], [Ag], solvent (2.0 mL) for 5 h; ^{*b*}at the atmosphere of N₂; ^{*c*} Isolated yield based on 2,4-diphenylquinazoline **1a**, NR = no reaction;

3. Typical procedure for Rhodium-Catalyzed Malonation of 2-Phenylquinazolines with 2-Diazomalonates

A mixture of 2,4-diphenylquinazoline **1** (0.3 mmol) and diethyl 2-diazomalonate **2** (0.6 mmol), $[Cp*RhCl_2]_2(1 \text{ mol}\%)$, AgOTf (5 mol%) and EtOH (2.0 mL) were added into a flask . The mixture was stirred at 75 °C and the reaction was monitored by TLC analysis for about 5 h. After being cooling to room temperature, evaporation of the solvent under reduced pressure followed purification by silica gel chromatography using petroleum ether/ethyl acetate (6:1) as eluent to provide the desired products **3**.

Tetraethyl 2,2'-(2-(4-phenylquinazolin-2-yl)-1,3-phenylene)dimalonate (**3a**) White solid (103 mg, 86% yield), mp 114.5-116.7°C; ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 8.4 Hz, 1H), 8.07 (d, J = 8.4 Hz, 1H), 7.96 (t, J = 7.6 Hz, 1H), 7.83 (d, J = 3.6 Hz, 2H), 7.68 (t, J = 7.0 Hz, 1H), 7.62 (d, J = 7.4 Hz, 2H), 7.57 – 7.55 (m, 3H), 7.52 (d, J = 8.6 Hz, 1H), 4.75 (s, 2H), 4.16 (q, J = 7.2 Hz, 4H), 4.02 (q, J = 7.2 Hz, 4H), 1.13 (t, J = 7.2 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 168.2, 160.8, 151.2, 139.5, 137.0, 134.0, 132.3, 130.4, 130.1, 129.2, 129.1, 129.0, 128.5, 128.2, 127.1, 121.1, 61.6, 55.7, 13.9. HRMS (ESI): m/z [M + Na]⁺ calcd for C₃₄H₃₃N₂NaO₈, 621.2207; found 621.2227.

Tetraethyl 2,2'-(5-methyl-2-(4-phenylquinazolin-2-yl)-1,3-phenylene)dimalonate (3b)

White solid (109 mg, 89% yield), mp 115.2-116.5°C; ¹H NMR (400 MHz, CDCl₃) δ

8.20 (d, J = 8.8 Hz, 1H), 8.06 (d, J = 8.0 Hz, 1H), 7.94 (t, J = 7.6 Hz, 1H), 7.8-7.81 (m, 2H), 7.66 (t, J = 7.7 Hz, 1H), 7.58 – 7.53 (m, 3H), 7.41 (s, 2H), 4.78 (s, 2H), 4.16 (q, J = 7.2 Hz, 4H), 4.04 (q, J = 7.2 Hz, 4H), 2.45 (s, 3H), 1.12 (t, J = 7.2 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 168.1, 161.0, 151.2, 138.9, 137.1, 136.8, 133.8, 132.1, 130.4, 130.0, 129.8, 129.0, 128.4, 128.0, 127.1, 61.5, 55.6, 21.6, 13.9. HRMS (ESI): m/z [M + Na]⁺ calcd for C₃₅H₃₆N₂NaO₈, 635.2364; found: 635.2347.

Tetraethyl 2,2'-(5-methoxy-2-(4-phenylquinazolin-2-yl)-1,3-phenylene)dimalonate (**3c**) White solid (92 mg, 73% yield), mp 96.5-97.9°C; ¹H NMR (400 MHz, CDCl₃) δ 8.19

(d, J = 8.4 Hz, 1H), 8.05 (d, J = 8.4 Hz, 1H), 7.94 (t, J = 7.6 Hz, 1H), 7.84-7.82 (m, 2H), 7.65 (t, J = 8.0 Hz, 1H), 7.57 – 7.56 (m, 3H), 7.18 (s, 2H), 4.85 (s, 2H), 4.16 (q, J = 7.2 Hz, 4H), 4.01 (q, J = 7.2 Hz, 4H), 3.88 (s, 3H), 1.13 (t, J = 7.2 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 168.0, 160.7, 159.6, 151.2, 137.0, 133.9, 133.8, 132.4, 130.4, 130.1, 129.0, 128.5, 128.0, 127.1, 120.9, 61.6, 55.8, 55.5, 13.9. HRMS (ESI): m/z [M + Na]⁺ calcd for C₃₅H₃₆N₂NaO₉ 651.2313; found: 651.2333.

Tetraethyl 2,2'-(5-(dimethylamino)-2-(4-phenylquinazolin-2-yl)-1,3-phenylene) dimalonate (**3d**)

Yellow solid (127 mg, 99% yield), mp 142.6-144.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.0 Hz, 1H), 7.99 (d, *J* = 8.4 Hz, 1H), 7.86 (t, *J* = 8.0 Hz, 1H), 7.79 (s, 2H), 7.56 (t, *J* = 8.0 Hz, 1H), 7.52 (s, 3H), 6.89 (s, 2H), 4.94 (s, 2H), 4.14 (q, *J* = 7.2 Hz, 4H), 3.98 (q, *J* = 7.2 Hz, 4H), 3.00 (s, 6H), 1.10 (t, *J* = 7.2 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 167.6, 161.3, 151.3, 150.3, 137.3, 133.5, 133.3, 130.3, 129.8, 128.9, 128.3, 127.9, 127.5, 126.9, 120.6, 113.0, 61.3, 56.0, 40.2, 13.9. HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₃₆H₃₉N₃NaO₈ 664.2635; found: 664.2607.

Tetraethyl 2,2'-(4-(4-phenylquinazolin-2-yl)-[1,1'-biphenyl]-3,5-diyl)dimalonate (**3e**) White solid (109 mg, 81% yield), mp 125.2-127.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 8.4 Hz, 1H), 8.09 (d, *J* = 8.4 Hz, 1H), 7.96 (t, *J* = 7.8 Hz, 1H), 7.87-7.85 (m, 4H), 7.71 – 7.65 (m, 3H), 7.59 – 7.55 (m, 3H), 7.45 (t, *J* = 7.7 Hz, 2H), 7.37 (t, *J* = 6.8 Hz, 1H), 4.86 (s, 2H), 4.16 (q, *J* = 7.2 Hz, 4H), 4.02 (q, *J* = 7.2 Hz, 4H), 1.13 (t, *J* = 7.2 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 168.2, 160.8, 151.3, 141.7, 140.3, 138.5, 137.0, 134.0, 132.7, 130.4, 130.1, 129.1, 128.8, 128.5, 128.2, 128.1, 127.7, 127.4, 127.1, 121.1, 61.6, 55.7, 13.9. HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₄₀H₃₈N₂NaO₈ 697.2526; found:697.2545.

Tetraethyl

2,2'-(2-(4-phenylquinazolin-2-yl)-5-(trifluoromethyl)-1,3-phenylene)dimalonate (**3f**) Light yellow solid (107 mg, 80% yield), mp 142.2-144.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 7.6 Hz, 1H), 8.08 (d, *J* = 7.6 Hz, 1H), 8.00 (t, *J* = 7.6 Hz, 1H), 7.94 (s, 2H), 7.85 (d, *J* = 8.0 Hz, 2H), 7.73 (t, *J* = 7.6 Hz, 1H), 7.60 – 7.56 (m, 3H), 4.77 (s, 2H), 4.17 (q, *J* = 7.2 Hz, 4H), 4.06 (q, *J* = 7.2 Hz, 4H), 1.14 (t, *J* = 7.2 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 167.6, 159.8, 151.2, 142.9, 136.8, 134.2, 133.3, 130.9, (q, ²*J*_{*C-F*} = 33.0 Hz), 130.3, 130.2, 129.1, 128.6, 128.5, 127.2, 126.4 (q, ³*J*_{*C-F*} = 4.0 Hz), 123.8(q, ¹*J*_{*C-F*} = 271.0 Hz), 121.3, 61.8, 55.5, 13.8. HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₃₅H₃₃F₃N₂NaO₈; 689.2081; found: 689.2078.

Tetraethyl 2,2'-(5-fluoro-2-(4-phenylquinazolin-2-yl)-1,3-phenylene)dimalonate (**3g**) White solid (92 mg, 75% yield), mp 114.5-116.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.4 Hz, 1H), 8.06 (d, *J* = 8.4 Hz, 1H), 7.96 (t, *J* = 8.4 Hz, 1H), 7.85-7.83 (m, 2H), 7.68 (t, *J* = 8.0 Hz,1H), 7.57-7,56 (m, 3H), 7.41 (d, *J* = 8.4 Hz, 2H), 4.79 (s, 2H), 4.19 (q, *J* = 7.2 Hz, 4H), 4.04 (q, *J* = 7.2 Hz, 4H), 1.02 (t, *J* = 7.2 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 167.9, 162.3 (d, ¹*J*_{C-F} = 248.0 Hz), 160.1, 151.2, 136.9, 135.9 (d, ³*J*_{C-F} = 4.0 Hz), 134.7, 134.6, 134.1, 130.3, 129.0, 128.5, 128.4, 127.2, 121.1, 116.6 (d, ²*J*_{C-F} = 23.0 Hz), 61.8, 55.6, 13.9. HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₃₄H₃₃FN₂NaO₈; 639.2119; found: 639.2119.

Tetraethyl 2,2'-(2-(5-fluoro-4-phenylquinazolin-2-yl)-1,3-phenylene)dimalonate (**3h**) White solid (108 mg, 88% yield), mp 99.6-101.2°C; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 2.0 Hz, 2H), 7.71 (d, *J* = 8.8 Hz, 2H), 7.62 (d, *J* = 8.0 Hz, 2H), 7.55 –7.48 (m, 4H), 7.35 –7.30 (m, 1H), 4.72 (s, 2H), 4.16 (q, *J* = 7.2 Hz, 4H), 4.02 (q, *J* = 7.2 Hz, 4H), 1.13 (t, *J* = 7.2 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 166.1, 161.1, 157.9 (d, ¹*J*_{C-F} = 261.0 Hz), 152.5, 139.4, 139.1, 134.1(d, ³*J*_{C-F} = 10.0 Hz), 132.3, 129.8, 129.5 (d, ³*J*_{C-F} = 4.0 Hz), 129.3, 129.1, 127.7, 125.3, 113.4 (d, ²*J*_{C-F} = 21.0 Hz), 112.1 (d, ²*J*_{C-F} = 12.0 Hz), 61.6, 55.6, 13.9. HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₃₄H₃₃FN₂NaO₈; 639.2119; found: 639.2126.

Tetraethyl 2,2'-(2-(7-methyl-4-phenylquinazolin-2-yl)-1,3-phenylene)dimalonate (**3i**) White solid (91 mg, 74% yield), mp 135.6-136.8°C; ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 8.4 Hz, 1H), 7.82 – 7.80 (m, 3H), 7.60 (d, *J* = 8.0 Hz, 2H), 7.53-7.52 (m, 3H), 7.49 (t, *J* = 7.2 Hz, 2H), 4.77 (s, 2H), 4.14 (q, *J* = 7.2 Hz, 4H), 4.02 (q, *J* = 7.2 Hz, 4H), 2.60 (s, 3H), 1.11 (t, *J* = 7.2 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 167.7, 160.9, 151.5, 145.0, 139.8, 137.2, 132.3, 130.4, 130.3, 129.9, 129.2, 128.7, 128.4, 128.0, 126.7, 119.3, 61.5, 55.2, 22.1, 13.8. HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₃₅H₃₆N₂NaO₈, 635.2369; found: 635.2363.

Tetraethyl 2,2'-(2-(4-(*p*-tolyl)quinazolin-2-yl)-1,3-phenylene)dimalonate (**3j**) White solid (116 mg, 95% yield), mp 101.5-103.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 8.4 Hz, 1H), 8.05 (d, *J* = 8.4 Hz, 1H), 7.93 (t, *J* = 7.6 Hz, 1H), 7.75 (d, *J* = 8.0 Hz, 2H), 7.66 (t, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 7.6 Hz, 2H), 7.52 (t, *J* = 8.0 Hz, 1H), 7.36 (d, *J* = 8.0 Hz, 2H), 4.77 (s, 2H), 4.16 (q, *J* = 7.2 Hz, 4H), 4.02 (q, *J* = 7.2 Hz, 4H), 2.47 (s, 3H), 1.12 (t, *J* = 7.2 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 168.2, 160.8, 151.2, 140.4, 139.7, 134.2, 133.8, 132.3, 130.4, 129.2, 129.2, 129.0, 128.9, 128.0, 127.2, 121.1 61.6, 55.7, 21.4, 13.9. HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₃₅H₃₆N₂NaO₈; 635.2369; found: 635.2376.

Tetraethyl 2,2'-(2-(4-(4-methoxyphenyl)quinazolin-2-yl)-1,3-phenylene)dimalonate (**3k**)

Light yellow solid (124 mg, 99% yield), mp106.7-108.9°C; ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, *J* = 8.4 Hz, 1H), 8.04 (d, *J* = 8.4 Hz, 1H), 7.93 (t, *J* = 7.6 Hz, 1H), 7.84 (d, *J* = 8.4 Hz, 2H), 7.66 (t, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 8.0 Hz, 2H), 7.52 (t, *J* = 8.0 Hz, 1H), 7.07 (d, *J* = 8.4 Hz, 2H), 4.77 (s, 2H), 4.15 (q, *J* = 7.2 Hz, 4H), 4.04 (q, *J* = 7.2 Hz, 4H), 3.90 (s, 3H), 1.13 (t, *J* = 7.2 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 167.6, 161.5, 160.8, 151.3, 139.8, 133.7, 132.2, 132.1, 129.5, 129.2, 129.1, 128.8, 127.9, 127.1, 121.0, 114.0, 61.5, 55.7, 55.5, 13.9. HRMS (ESI): *m/z* [M + Na]⁺ calcd for C₃₅H₃₆N₂NaO₉; 651.2313; found:651.2343.

Tetraethyl 2,2'-(2-(4-(4-nitrophenyl)quinazolin-2-yl)-1,3-phenylene)dimalonate (**3l**) Yellow solid (103 mg, 80% yield), mp 102.3-104.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, *J* = 8.4 Hz, 2H), 8.02 (t, *J* = 7.2 Hz, 2H), 7.96 (d, *J* = 8.4 Hz, 2H), 7.92 (d, *J* = 8.4 Hz, 1H), 7.65 (t, *J* = 7.6 Hz, 1H), 7.53 (d, *J* = 8.0 Hz, 2H), 7.46 (d, *J* = 7.2 Hz, 1H), 4.61 (s, 2H), 4.17 (q, *J* = 7.2 Hz, 4H), 4.06 (q, *J* = 7.2 Hz, 4H), 1.15 (t, *J* = 7.2 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 165.9, 160.8, 151.3, 148.8, 142.9, 139.1, 134.6, 132.3, 131.3, 129.4, 129.4, 129.2, 129.0, 126.1, 123.7, 120.7, 61.7, 55.8, 13.9. HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₃₄H₃N₃NaO₁₀ 666.2064; found: 666.2079.

Tetraethyl

2,2'-(2-(4-(4-(trifluoromethyl)phenyl)quinazolin-2-yl)-1,3-phenylene)dimalonate (**3m**) White solid (131 mg, 98%yield), mp101.2-103.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (t, *J* = 8.0 Hz, 2H), 7.89-7.93 (m, 3H), 7.77-7.75 (m, 2H), 7.63 (t, *J* = 7.2 Hz, 1H), 7.55 (d, *J* = 8.0 Hz, 1H), 7.47 (t, *J* = 8.0 Hz, 1H), 4.65 (s, 2H), 4.08 (q, *J* = 7.2 Hz, 4H), 3.95 (q, *J* = 7.2 Hz, 4H), 1.05 (t, *J* = 7.2 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 166.7, 160.9, 151.3, 140.5, 139.3, 134.3, 132.3, 132.1 (q, ²*J*_{C-F} = 32.0 Hz), 130.7, 129.3, 129.2, 129.0, 128.6, 126.4, 125.4 (q, ³*J*_{C-F} = 4.0 Hz), 123.9 (q, ¹*J*_{C-F} = 271.0 Hz), 120.9, 61.6, 55.8, 13.8. HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₃₅H₃₃F₃N₂NaO₈; 689.2087; found: 689.2123.

Tetraethyl 2,2'-(2-(4-(4-chlorophenyl)quinazolin-2-yl)-1,3-phenylene)dimalonate (**3n**) White solid (124mg, 98%yield), mp 79.8-82.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.4 Hz, 1H), 8.07 (d, *J* = 8.4 Hz, 1H), 7.96 (t, *J* = 7.8 Hz, 1H), 7.81 (d, *J* = 8.4 Hz, 2H), 7.69 (t, *J* = 8.0 Hz, 1H), 7.63 (d, *J* = 7.6 Hz, 2H), 7.56-7.35 (m, 3H), 4.73 (s, 2H), 4.14 (q, *J* = 7.6 Hz, 4H), 4.04 (q, *J* = 7.6 Hz, 4H), 1.13 (t, *J* = 7.6 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 166.9, 160.8, 151.3, 139.4, 136.6, 135.4, 134.2, 132.3, 131.7, 129.3, 129.2, 129.0, 128.8, 128.4, 126.7, 120.9, 61.6, 55.7, 13.9. HRMS (ESI): *m/z* [M + Na]⁺ calcd for C₃₄H₃₃ClN₂NaO₈; 655.1851; found: 655.1827.

Tetraethyl 2,2'-(2-(4-methylquinazolin-2-yl)-1,3-phenylene)dimalonate (**30**)

White solid (89 mg, 83% yield), mp 94.2-95.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.4 Hz, 1H), 7.98 (d, *J* = 8.4 Hz, 1H), 7.92 (t, *J* = 7.6 Hz, 1H), 7.70 (t, *J* = 7.6 Hz, 1H), 7.60 (d, *J* = 8.0 Hz, 2H), 7.51 (t, *J* = 8.0 Hz 1H), 4.69 (s, 2H), 4.20 (q, *J* = 7.6 Hz, 4H), 4.04 (q, *J* = 7.6 Hz, 8H) 2.96 (s, 3H), 1.20 (t, *J* = 7.2 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 168.3, 160.5, 149.6, 139.4, 133.9, 132.3, 129.2, 129.2, 128.9, 128.0, 125.0, 122.4, 61.6, 55.9, 21.5, 14.0. HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₂₉H₃₂N₂NaO₈; 559.2056; found: 559.2035.

Tetraethyl 2,2'-(4-methyl-2-(4-phenylquinazolin-2-yl)-1,3-phenylene)dimalonate (**3p**) White solid (51mg, 42%yield), mp 112.6-114.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 8.4 Hz, 1H), 8.07 (d, *J* = 8.4 Hz, 1H), 7.94 (t, *J* = 8.0 Hz, 1H), 7.84 (d, *J* = 7.6 Hz, 2H), 7.66 (t, *J* = 7.6 Hz, 1H), 7.56 – 7.51 (m, 4H), 7.36 (d, *J* = 8.4 Hz, 1H), 4.69 (s, 1H), 4.61 (s, 1H), 4.17 – 4.10 (m, 4H), 4.03 – 3.94 (m, 4H), 2.43 (s, 3H), 1.12-1.08 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 168.3, 168.1, 161.8, 151.2, 141.3, 138.8, 137.0, 134.0, 132.1, 131.3, 130.4, 130.2, 129.6, 129.1, 128.8, 128.5, 128.2, 127.1, 121.0, 61.5, 61.4, 55.5, 55.4, 20.5, 13.9, 13.9. HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₃₅H₃₆N₂NaO₈; 635.2369; found: 635.2376.

Diethyl 2-(3-methyl-2-(4-phenylquinazolin-2-yl)phenyl)malonate (**3q**) Colorless oil (70mg, 77% yield) ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, *J* = 8.0 Hz, 1H), 8.12 (d, *J* = 8.4 Hz, 1H), 7.93 (t, *J* = 8.4 Hz, 1H), 7.84-7.83 (m, 2H), 7.64 (t, *J* = 8.0 Hz, 1H), 7.56-7.55 (m, 3H), 7.49 (d, *J* = 7.6 Hz, 1H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.30 (d, *J* = 7.6 Hz, 1H), 4.62 (s, 1H), 4. 13 (q, *J* = 7.6 Hz, 2H), 4.05 (q, *J* = 7.6 Hz, 2H), 2.30 (s, 3H), 1.12 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 168.4, 162.4, 151.4, 139.6, 137.1, 136.8, 134.0, 131.6, 130.4, 130.2, 130.1, 129.0, 128.7, 128.6, 128.0, 127.1, 126.8, 121.1, 61.5, 55.5, 20.8, 14.0. HRMS (ESI): *m/z* [M + Na]⁺ calcd for C₂₈H₂₆N₂NaO₄; 477.1790; found: 477.1797.

Diethyl 2-(2-(4-phenylquinazolin-2-yl)furan-3-yl)malonate (**3r**) Brown solid (56mg, 65%yield), mp 86.2-88.5°C; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.4 Hz, 1H), 7.99 (d, *J* = 8.0 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.76-7.74 (m, 2H), 7.58 (d, *J* = 1.3 Hz, 1H), 7.49 (t, *J* = 7.2 Hz, 3H), 7.44 (t, *J* = 8.0 Hz, 1H), 6.66 (d, *J* = 1.5 Hz, 1H), 6.27 (s, 1H), 4.12 (q, *J* = 7.2 Hz, 4H), 1.15 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 168.39 , 168.30 , 153.92 , 151.58 , 148.17 , 144.04 , 137.08 , 133.98 , 130.19 , 130.08 , 128.99 , 128.56 , 127.27 , 127.15 , 121.92 , 121.37 , 113.79 , 61.70 , 50.22 , 14.04. HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₂₅H₂₂N₂NaO₅; 453.1426; found: 453.1438.

Tetramethyl 2,2'-(5-methyl-2-(4-phenylquinazolin-2-yl)-1,3-phenylene)dimalonate (3s)

White solid (87 mg, 78% yield), mp 149.5-151.5°C; ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 8.4 Hz, 1H), 7.87 (dt, J = 1.2, 8.4 Hz, 1H), 7.73 – 7.70 (m, 2H), 7.58 (dt, J = 0.8, 7.8Hz, 1H), 7.49 – 7.47 (m, 3H), 7.32 (s, 2H), 4.72 (s, 2H), 3.52 (s, 12H), 2.37 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 167.8, 167.1, 159.5, 149.9, 138.1, 135.6, 135.9, 132.9, 130.9, 129.1, 128.9, 128.8, 127.9, 127.3, 127.0, 126.0, 119.8, 54.2, 51.4, 20.5.

Diethyl 2-(3-(1,3-dimethoxy-1,3-dioxopropan-2-yl)-2-(4-phenylquinazolin-2-yl) phenyl) malonate

White solid (58 mg, 51% yield), mp 118.5-120.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 8.0 Hz, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.88 (t, J = 7.6 Hz, 1H), 7.79-7.75 (m, 2H), 7.60 (t, J = 7.2 Hz, 1H), 7.58 -7.32 (m, 6H), 4.69 (d, J = 4.4 Hz, 2H), 4.08 (q, J = 7.0 Hz, 2H), 3.95 (q, J = 6.8 Hz, 2H), 3.52 (s, 6H), 1.05 (t, J = 7.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 168.4, 168.3, 160.7, 151.1, 139.5, 137.0, 134.1, 132.4, 132.1, 130.3, 130.1, 129.4, 129.2, 129.0, 128.5, 128.3, 127.1, 121.1, 61.6, 55.7, 55.4, 52.6, 13.9.

4. ¹H and ¹³C NMR spectra of compounds

8,212 8,045 1,045	4,779 4,174 4,174 4,174 4,129 3,962 3,962	-2.448	1.142 1.124 1.106
---	---	--------	-------------------------

8.205 8.184 8.184 8.035 7.957 7.957 7.957 7.822 7.822 7.651 7.651 7.651 7.657 7.570 7.570 7.570

4.846 4.184 4.157 4.157 4.139 4.035 4.035 3.390 3.876

^{1.153}
^{1.153}
^{1.135}
^{1.117}

100 90 80 f1 (ppm)

5. Track record ¹HNMRs spectra at temperature changing from 25 $^\circ C$ to -20 $^\circ C$

Zzp-2-7 25°C

Zzp-2-7 -20°C

6. X-ray illustration of compound 3a and 3k

3k

