Supporting information

2

1

- 3 Synthesis of hierarchical nanoporous carbon material with
- 4 controllable pore size and effective surface area for high-
- 5 performance electrochemical capacitors
- 6
- 7 Bing Hu^{*a*}, Ling-Bin Kong^{*a,b,**}, Long Kang^{*b*}, Kun Yan^{*a*}, Tong Zhang^{*a*}, Kai Li^{*a*}, and
- 8 Yong-Chun Luo^b
- 9
- 10 ^a State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals,
- 11 Lanzhou University of Technology, Lanzhou 730050, P. R. China
- 12 ^b School of Materials Science and Engineering, Lanzhou University of Technology,
- 13 Lanzhou 730050, P. R. China
- 14
- ¹⁵ *Corresponding author: Tel.: +86-931-2976579; Fax: +86-931-2976578.
- 16 E-mail address: konglb@lut.cn
- 17
- 18 This supporting information includes:

19 Scheme S1, Scheme S2, Table S1, Table S2, Figure S1, Figure S2, Figure S3, Figure S4, Figure S5, Figure S6 and Figure S7

- 21
- 22
- 23
- 24
- 25

1

3

2 (1) Formation of carbocation ⁺CCl₃

4 (2) Formation of -CCl₂- crosslinking bridges

5

6 (3) Formation of -CO- crosslinking bridges

7

8 Scheme S1 Formation mechanism of -CO- crosslinking bridge for (I) polymer network of IPN.

9

10

Scheme S2 Formation mechanism of (II) polymer network of IPN.

Figure S1 TGA curves of the cross-linked PS and PMMA.

5 Figure S2 TEM images of (a) HNC synthesized cross-linked PS pyrolysis; HRTEM images of (b)
6 HNC.

9 Figure S3 Electrochemical performance of HNC electrode in 6 mol L⁻¹ KOH aqueous electrolyte:
10 (a) CV curves measured at different scan rates from 5 to 50 mV s⁻¹ with a potential window from 11 to 0V; (b) Galvanostatic charge-discharge curves measured at different current densities from
12 0.5 to 10 A g⁻¹.

2 Figure S4 (a) N₂ adsorption-desorption isotherms and (b) pore size distributions corresponding to
3 the HNC-B pyrolysed by PS/PMMA polymer blend with the mass ratio of 20/80.

5 Figure S5 Electrochemical performance of HNC-B pyrolysed by PS/PMMA blend with the mass 6 ratio of 20/80 in 6 mol L⁻¹ KOH aqueous electrolyte: (a) CV curves measured at different scan 7 rates from 5 to 500 mV s⁻¹ with a potential window from -1 to 0V; (b) Galvanostatic charge-8 discharge curves measured at different current densities from 0.5 to 20 A g^{-1} ; (c) EIS curve 9 measured in the frequency range from 10⁻⁵ to 10⁻² Hz at the open circuit potential with an alternate 10 current amplitude of 5 mV; (d) Specific capacitances of the HNC-B under different current 11 densities ranging from 0.5 to 20 A g^{-1} ;

- 12
- 13
- 14

1 Table S1

Sample	PS/PMMA	S_{BET}^{a}	S _{mic} ^b	S_{meso} ^c	V_{total} ^d	V _{mic} ^e	V_{mic}/V_{total}	$\mathbf{D}_{\mathbf{a}}^{f}$	C_g^{h}
	(mg/mg)	(m ² g ⁻¹)	(m^2g^{-1})	(m ² g ⁻¹)	(cm ³ g ⁻¹)	(cm ³ g ⁻¹)	(%)	(nm)	(Fg ⁻¹)
HNC-B	20/80	608	505	103	0.35	0.28	80	2.3	189

^a The specific surface areas were calculated using the BET method. ^b Micropore surface area. ^c
^g Mesopore surface area. ^d Total pore volume measured at P/P₀ =0.99. ^e Micropore volume. ^f The

4 average pore diameters were calculated from the adsorption of the isotherms by using the DFT

5 model. ^h Calculated from the galvanostatic discharge curve at the current density at 0.5 A g⁻¹ in

6 6M KOH aqueous electrolyte based on the three-electrode system.

7

8 Table S2 Parameters determined by Raman spectrum of HNC, HNC-IPN-1, HNC-IPN-2, HNC-

9	IPN-3, HNC-IPN-4 and HNC-IPN-5.									
	Comula -	Peak po	sition (cm ⁻¹)	Pea	I (mm)					
_	Sample -	D	G	D	G	$L_a(IIII)$				
-	HNC	1335	1596	878576	416226	2.06				
	HNC-IPN-1	1336	1595	233720	120833	2.25				
	HNC-IPN-2	1337	1592	356920	186890	2.27				
	HNC-IPN-3	1346	1591	1444296	760805	2.29				
	HNC-IPN-4	1348	1591	1167767	622419	2.31				
	HNC-IPN-5	1343	1592	296346	193217	2.28				

10

11

12 Figure S6 Specific capacitance of the four carbons at different current densities ranging from 0.5

13 to 10 A g⁻¹.

14

1

2 Figure S7 Cycling performance of the HNC-IPN-4 electrode in 6 M KOH aqueous electrolyte.

- 3 And the galvanostatic charge-discharge curves (shown as an inset) before and after 20 000 cycles.4 Data were obtained from a three-electrode system by using the galvanostatic charge-discharge
- 5 technique with a current density of 2 A g^{-1} .
- 6