Supplementary Information

Enhanced photoresponse of ZnO quantum dot-decorated MoS₂ thin films

Ghazanfar Nazir¹, M. Farooq Khan¹, Imtisal Akhtar², Kamran Akbar¹, Praveen Gautam¹,

Hwayong Noh¹, Yongho Seo², Seung-Hyun Chun¹ and Jonghwa Eom^{1*}

¹ Department of Physics & Astronomy and Graphene Research Institute, Sejong University, Seoul 05006, Korea

² Department of Nanotechnology & Advanced Materials Engineering and Graphene Research Institute, Sejong University, Seoul 05006, Korea

*E mail: eom@sejong.ac.kr

Figure S1. Raman Spectra of pristine MoS_2 flake (black curve) and ZnO-QDs/MoS₂ heterostructures (red curve). The difference between E^{1}_{2g} and A_{1g} is $\Delta = 24$ cm⁻¹, confirming the multilayer nature of the MoS_2 flake.

Figure S2. (a) AFM image of multilayer MoS_2 flake (scale bar: 0.41 µm). (b) Height profile along the purple line in AFM image confirms the multilayer nature of flake, which is 7 nm thick (~11 layers); a MoS_2 monolayer¹ is 0.65 nm thick.

Figure S3. AFM images of ZnO-QDs (scale bar: $0.05 \ \mu$ m) at different areas of the MoS₂device. Height profiles along the lines in AFM images indicate the size of QDs; the average height of ZnO-QDs is 2 - 4Å and the average width is 10 - 20 nm.

•

Figure S4. Fluorescence 3-D plot of ZnO-QDs. The x-axis shows the emission (nanometer) after incident light falls on the ZnO-QDs and the y-axis shows the excitation (nanometer) peaks at different energies of the photon of incident light (200–900 eV). The highest peak for ZnO-QDs is at 378 nm, providing a bandgap of 3.28 eV estimated by the formula $E_g = hc/\lambda$. The red thick line is caused by Raman scattering of methanol solution.

Material (no.of layers)	V _{ds} (V)	V _{bg} (V)	Wavelengt h λ (nm)	Power of incident light (mWcm ⁻²)	Responsivity R (mAW ⁻¹)	Spectral range	Ref.
$1L-MoS_2$	8	-70	561	2.4 x 10 ⁻¹	8.8 x 10 ⁵	Visible	2
$1L-MoS_2$	1.5	0	514.5	3.2 x 10 ⁴	1.1		3
3L-MoS ₂	10	0	532	2.0 x 10 ³	5.7 x 10 ²	$\lambda < 700$ nm	4
11L-MoS ₂	1	30	220	11	1.913 x 10 ⁶	UV- Visible	This work
11L-MoS ₂ after drop- casting ZnO-QD	1	30	220	11	2.267 x 10 ⁶	UV- Visible	This work
1L-MoS ₂	1	50	532	8.0 x 10 ⁴	7.5	Visible	2
GaSe	5	0	254	1	2.8 x 10 ³	UV- Visible	5
GaS	2	0	254	2.6 x 10 ⁻²	4.2 x 10 ³	UV- Visible	

 Table S1. Comparison of different photo-electrical characteristics for different materials.

References

- 1. B. Radisavljevic, A. Radenovic, J. Brivio, i. V. Giacometti and A. Kis, *Nature nanotechnology*, 2011, 6, 147-150.
- 2. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen and H. Zhang, *ACS nano*, 2011, 6, 74-80.
- 3. N. Perea-López, Z. Lin, N. R. Pradhan, A. Iñiguez-Rábago, A. L. Elías, A. McCreary, J. Lou, P. M. Ajayan, H. Terrones and L. Balicas, *2D Materials*, 2014, 1, 011004.
- 4. D.-S. Tsai, K.-K. Liu, D.-H. Lien, M.-L. Tsai, C.-F. Kang, C.-A. Lin, L.-J. Li and J.-H. He, *ACS nano*, 2013, 7, 3905-3911.
- 5. P. Hu, Z. Wen, L. Wang, P. Tan and K. Xiao, *ACS nano*, 2012, 6, 5988-5994.
- P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J. C. Idrobo, Y. Miyamoto and D. B. Geohegan, *Nano letters*, 2013, 13, 1649-1654.