Supporting Information

A novel one-pot process for preparation of linear and

hyperbranched polycarbonates of various diols and triols

using dimethyl carbonate

Jingjiang Sun¹, Kamal Ibrahim Aly², Dirk Kuckling^{*1} ¹University of Paderborn, Chemistry Department, Warburger Str. 100, D-33098 Paderborn, Germany Email: dirk.kuckling@uni-paderborn.de ² Assiut University, Faculty of Science, Chemistry Department, Polymer Research Laboratory, 71516 Assiut, Egypt E-mail: kamalaly@aun.edu.eg • ¹H and ¹³C NMR spectra of linear and hyperbranched polycarbonates

Poly(trimethylene carbonate), (PTMC, Figure SI-1)

$$HO \underbrace{c}_{a} \underbrace{O}_{d} \underbrace{O}_{1} \underbrace{O}_{1} \underbrace{O}_{n} \underbrace{O}_{O$$

¹H-NMR (500 MHz, CDCl₃)

δ (ppm) = 2.04 (m, 2 H, ${}^{2}CH_{2}$), 3.73 (t, 2 H, ${}^{3}J_{HH}$ = 5.8 Hz, ${}^{a}CH_{2}$), 3.77 (s, 3 H, O^bCH), 4.23 (t, 4 H, ${}^{3}J_{HH}$ = 6.2 Hz, ${}^{1}CH_{2}$)

¹³C-NMR (125 MHz, CDCl₃)

δ (ppm) = 28.14 (1 C, ²CH₂), 37.13 (1 C, ^cCH₂), 59.01 (1 C, ^aCH₂), 64.37 (2 C, ¹CH₂), 65.13 (1 C, ^dCH₂), 154.97 (1 C, ³C_q), 155.35 (1 C, ^eC_q)

Figure SI-1. ¹H and ¹³C NMR spectra of PTMC

Poly(butylene carbonate), (PBC, Figure SI-2)

$$HO \xrightarrow{a}_{b} d \xrightarrow{O}_{d} O \xrightarrow{2}_{1} O \xrightarrow{O}_{3} O \xrightarrow{c}_{n}$$

¹H-NMR (500 MHz, CDCl₃)

 δ (ppm) = 1.65 (m, 3 H, ^bCH₂, OH), 1.76 (b, 4 H, ²CH₂), 3.67 (t, 2 H, ³J_{HH} = 6.3 Hz, ^aCH₂), 3.77 (s, 3 H, O^cCH₃), 4.15 (b, 4 H, ¹CH₂)

¹³C-NMR (125 MHz, CDCl₃)

 δ (ppm) = 28.28 (2 C, ²CH₂), 29.04 (1 C, ^bCH₂), 54.83 (1 C, ^cCH₃), 62.39 (1 C, ^aCH₂), 67.39 (2 C, ¹CH₂), 67.89 (1 C, ^dCH₂), 155.30 (1 C, ³C_q), 155.36 (1 C, ^eC_q)

Poly(pentamethylene carbonate), (PPC, Figure SI-3)

¹H-NMR (500 MHz, CDCl₃)

δ (ppm) = 1.46 (m, 2 H, ³CH₂), 1.70 (m, 4 H, ²CH₂), 3.64 (t, 2 H, ³J_{HH} = 6.5 Hz, ^aCH₂), 3.76 (s, 3 H, O^bCH₃), 4.12 (t, 4 H, ³J_{HH} = 6.6 Hz, ¹CH₂)

¹³C-NMR (125 MHz, CDCl₃)

δ (ppm) = 21.97 (1 C, ³CH₂), 28.19 (2 C, ²CH₂), 32.14 (1 C, ^cCH₂), 62.51 (1 C, ^aCH₂), 67.50 (2 C, ¹CH₂), 67.71 (1 C, ^dCH₂), 155.16 (1 C, ⁴C_q)

Figure SI-3. ¹H NMR and ¹³C spectra of PPC

Poly(hexamethylene carbonate), (PHC, Figure SI-4)

$$HO \xrightarrow{a}_{c} O \xrightarrow{O}_{l} O \xrightarrow{2}_{d} \xrightarrow{O}_{d} O \xrightarrow{b}_{n}$$

¹H-NMR (500 MHz, CDCl₃)

$$\begin{split} &\delta \text{ (ppm) = 1.40 (m, 4 H, {}^{3}\text{CH}_{2}\text{), 1.67 (m, 4 H, {}^{2}\text{CH}_{2}\text{), 3.63 (t, 2 H, {}^{3}\text{J}_{\text{HH}}\text{ = 6.5 Hz,}} \\ & \ ^{a}\text{CH}_{2}\text{), 3.77 (s, 3 H, O^{b}\text{CH}_{3}\text{), 4.11 (t, 4 H, {}^{3}\text{J}_{\text{HH}}\text{ = 6.7 Hz, {}^{1}\text{CH}_{2}\text{)}} \end{split}$$

¹³C-NMR (125 MHz, CDCl₃)

δ (ppm) = 25.75 (2 C, ${}^{3}CH_{2}$), 28.93 (2 C, ${}^{2}CH_{2}$), 32.95 (1 C, ${}^{c}CH_{2}$), 55.00 (1 C, ${}^{b}CH_{3}$), 63.13 (1 C, ${}^{a}CH_{2}$), 68.14 (2 C, ${}^{1}CH_{2}$), 155.72 (1 C, ${}^{4}C_{q}$)

Poly(diethylphenylamine carbonate), (PDEAC, Figure SI-5)

¹H-NMR (500 MHz, CDCl₃)

δ (ppm) = 3.17 (t, 2 H, ${}^{3}J_{HH}$ = 4.8 Hz, ${}^{b}CH_{2}$), 3.54-3.70 (m, 4 H, ${}^{1}CH_{2}$), 3.50 (t, 2 H, ${}^{3}J_{HH}$ = 5.6 Hz, ${}^{c}CH_{2}$), 3.77 (t, 2 H, ${}^{3}J_{HH}$ = 5.6 Hz, ${}^{d}CH_{2}$), 3.87 (t, 2 H, ${}^{3}J_{HH}$ = 4.8 Hz, ${}^{a}CH_{2}$), 4.17-4.40 (m, 4 H, ${}^{2}CH_{2}$), 6.66-6.80 (m, 3 H, ${}^{3,5}CH$), 6.86-6.94 (m, 3 H, ${}^{e,g}CH$), 7.16-7.26 (m, 2 H, ${}^{4}CH$), 7.26-7.31 (m, 2 H, ${}^{f}CH$)

¹³C-NMR (125 MHz, CDCl₃)

δ (ppm) = 49.52 (1 C, ^bCH₂), 49.79 (2 C, ¹CH₂), 50.64 (1 C, ^cCH₂), 54.50 (1 C, ⁱCH₃), 60.30 (1 C, ^dCH₂), 64.91 (2 C, ²CH₂), 67.07 (1 C, ^aCH₂), 112.29, 117.44, 129.65, 147.06 (6 C, ³⁻⁶C_{Ar}), 113.08, 115.85, 120.17, 129.31, 129.53, 147.92 (6 C, ^{e,f,g,h}C_{Ar}), 155.15 (1 C, ⁷C_q), 155.21 (1 C, ^hC_q)

Figure SI-5. ¹H and ¹³C NMR spectra of PDEAC

Poly(cyclohexan-1,4-dimethylene carbonate), (PCDMC, Figure SI-6)

¹H-NMR (500 MHz, CDCl₃)

 δ (ppm) = 0.97-1.90 (m, 10 H, ¹CH₂, ²CH), 3.44-3.54 (m, 2 H, ^aCH₂), 3.77 (s, 3 H, O^bCH₃), 3.93-4.04 (m, 4 H, ³CH₂)

¹³C-NMR (125 MHz, CDCl₃)

$$\begin{split} &\delta \text{ (ppm) = 25.18, 28.64 (4 C, {}^{1}\text{CH}_{2}\text{), 25.41 (2 C, {}^{d}\text{CH}_{2}\text{), 28.90 (2 C, {}^{e}\text{CH}_{2}\text{), 34.56,}} \\ &37.12 \text{ (2 C, {}^{2}\text{CH}\text{), 37.39 (1 C, {}^{\circ}\text{CH}\text{), 40.42 (1 C, {}^{f}\text{CH}\text{), 54.72 (1 C, {}^{b}\text{CH}_{3}\text{), 68.74,}} \\ &(1 \text{ C, {}^{a}\text{CH}_{2}\text{), 70.66, 72.80 (2 C, {}^{3}\text{CH}_{2}\text{), 155.55 (1 C, {}^{4}\text{C}_{q}\text{)}} \end{split}$$

Figure SI-6. ¹H and ¹³C NMR spectra of PCDMC

Poly(butylene carbonate)-co-poly(pentamethylene carbonate), (PBC-co-PPC, Figure SI-7)

¹H-NMR (500 MHz, CDCl₃)

δ (ppm) = 1.46 (m, 2 H, ⁵CH₂), 1.63-1.73 (m, 4 H, ⁴CH₂), 1.76 (m, 4 H, ²CH₂), 3.67 (m, 2 H, ^aCH₂), 3.77 (s, 3 H, O^bCH₃), 4.10-4.20 (m, 4 H, ¹CH₂; 4 H, ³CH₂)

Figure SI-7. ¹H NMR spectrum of PBC-co-PPC

Poly(butylene carbonate)-co-poly(hexamethylene carbonate), (PBC-co-PHC, Figure SI-8)

$$HO_{a} \xrightarrow{0}_{2 \text{ or } 4} O_{b} \xrightarrow{0}_{0} O\left[\underbrace{2 & 1 & 0 & 0}_{1 & 2} & \underbrace{3 & 5 & 4 & 0}_{0 & y} & \underbrace{3 & 5 & 4 & 0}_{y} & \underbrace{0 & y}_{y} \right]_{n}^{b}$$

¹H-NMR (500 MHz, CDCl₃)

 δ (ppm) = 1.40 (m, 4 H, ⁵CH₂), 1.67 (m, 4 H, ⁴CH₂), 1.77 (m, 4 H, ²CH₂), 3.62-3.69 (m, 2 H, ^aCH₂), 3.77-3.78 (m, 3 H, O^bCH₃), 4.00-4.27 (m, 4 H, ¹CH₂; 4 H, ³CH₂)

Poly(butylene carbonate)-co-poly(diethylphenylamine carbonate), (PBCco-PDEAC, Figure SI-9)

¹H-NMR (500 MHz, CDCl₃)

 δ (ppm) = 1.75 (m, 4 H, ²CH₂), 3.65 (m, 2 H, ^aCH₂), 3.76 (b, 3 H, O^bCH₃), 4.14 (m, 4 H, ¹CH₂), 4.26 (m, 4 H, ³CH₂), 6.73 (m, 3 H, ^{5,7}CH), 7.21(m, 2 H, ⁶CH)

¹H-NMR (500 MHz, CDCl₃)

$$\begin{split} &\delta \text{ (ppm) = 0.90-1.90 (m, 4 H, {}^{2}\text{CH}_{2}\text{; 10 H, {}^{4}\text{CH}, {}^{5}\text{CH}_{2}\text{), 3.66 (t, {}^{3}\text{J}_{\text{HH}}\text{ = 7.3 Hz, 2} \\ &\text{H, {}^{a}\text{CH}_{2}\text{), 3.75 (b, 3 H, O^{b}\text{CH}_{3}\text{), 3.90-4.05 (m, 4 H, {}^{3}\text{CH}_{2}\text{), 4.14 (m, 4 H, {}^{1}\text{CH}_{2}\text{)} } \end{split}$$

Figure SI-12. ¹³C NMR spectrum of PTHEC 1

• Detailed ESI-MS spectrum and analysis of PBC 9

Figure SI-13. Whole spectrum of PBC 9 in the m/z region of 400 to 2000.

Figure SI-14. Detailed analysis of ESI-MS spectrum of PBC 9 (S1-S6)

 Hydrolytic degradation investigation of PBC specimen at 37 °C pH = 7.4 and 55 °C pH = 13.0

Figure SI-15. Mass loss of PBC specimen during 30 days under biological and accelerated conditions, i.e., 37 °C pH = 7.4 and 55 °C pH = 13.0.