Supplementary Information for

Flexible Alternating Current Electroluminescent Ammonia Gas Sensor

Jaruwan En-on^a, Adisorn Tuantranont^b, Teerakiat Kerdcharoen^c Chatchawal Wongchoosuk^{a,*}

^aDepartment of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900 Thailand.

^bThailand Organic and Printed Electronics Innovation Center, National Electronics and Computer Technology Center, Klong Luang, Pathumthani 12120, Thailand.

^cDepartment of Physics and Center of Nanoscience and Nanotechnology, Faculty of Science,

Mahidol University, Bangkok 10400, Thailand.

*Corresponding author >> E-mail: <u>chatchawal.w@ku.ac.th</u>

Tel.: +662-562-5555; Fax: +662-942-8029

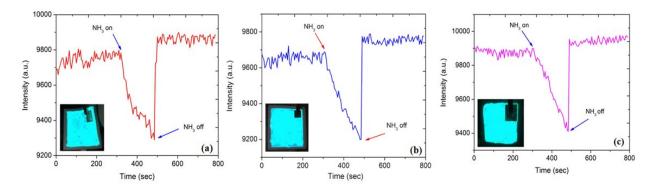


Figure S1: Dynamic response of EL gas sensors with different dark spots sites to 100 ppm NH_3 at room temperature. The calculated sensor responses of (a), (b), and (c) are 5.05%, 5.03%, and 4.94%, respective. The sensor responses of all EL gas sensors with different dark spots sites are still in the same range with SD < 0.07%.

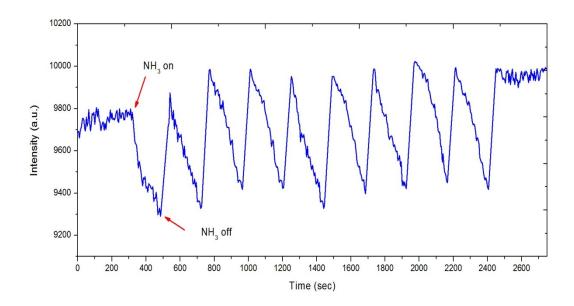


Figure S2: The reversible ability of EL gas sensor to 100 ppm NH_3 at room temperature up to 9 cycles

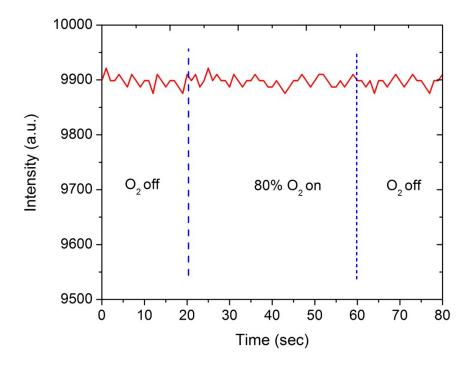
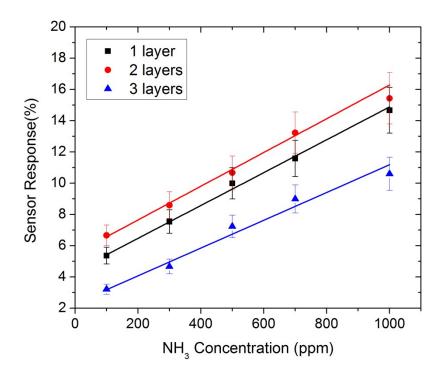
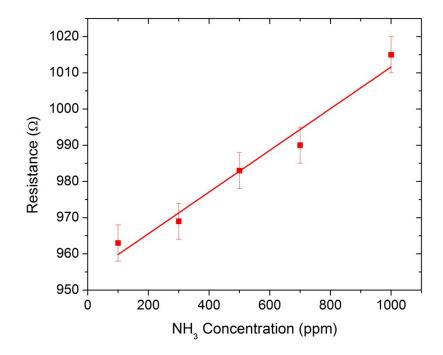




Figure S3: Dynamic response of EL gas sensor device to 80 vol% O₂ at room temperature.

Figure S4: Sensor response of 1 layer, 2 layer and 3 layers PEDOT:PSS of AC-EL gas sensors as a function of NH₃ concentration at room temperature.

Figure S5: The relationship of PEDOT: PSS resistance as a function of the different NH₃ concentrations at room temperature.