Supporting Information

Synthesis of 1,2,3-triazoles in the presence of mixed Mg/Fe oxides and their evaluation as corrosion inhibitors of API 5L X70 steel submerged in HCI

A. Espinoza-Vázquez,^a F. J. Rodríguez-Gómez,^a B. I. Vergara-Arenas,^b L. Lomas-Romero,^b D. Angeles-Beltrán,^c G. E. Negrón-Silva^{*}^c and J. A. Morales-Serna^b

^aFacultad de Química, Departamento de Ingeniería Metalúrgica, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacán, C.U., Ciudad de México, C.P. 04510, México.

^bDepartamento de Química, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco No.186, Ciudad de México, C.P. 09340, México.

^aDepartamento de Ciencias Básicas, Universidad Autónoma Metropolitana Azcapotzalco, Av. San Pablo No. 180, Ciudad de México, C.P. 02200, México. Email: gns@correo.azc.uam.mx.

Table of Contents

1. General methods	S1
2. Experimental procedures	S1
3. Characterization data	S3
4. References	S7

1. General methods

Commercially available reagents and solvents were used as received. Column chromatography was performed on Kiesel gel silica gel 60 (230-400 mesh). Melting points were determined using a Fisher-Johns apparatus and are uncorrected. The NMR spectra were obtained using Bruker Ascend-400 (400 MHz) spectrometer. Chemical shifts (δ) are given in ppm and coupling constants *J* are given in hertz (Hz). Microwave irradiation experiments were performed on a Discover System (CEM Corporation) single-mode microwave using standard sealed microwave glass vials. Simultaneous air jet cooling (3-4 bar) during microwave irradiation was performed by using a compressor. Powder X-ray diffraction (XRD) was performed using a Philips X'Pert Instrument with Cu-K α radiation (45kV, 40 mA).

2. Experimental procedures

Synthesis of Mg-Fe (3:1) layered double hydroxide (LDH)

Mg-Fe layer double hydroxide were prepared by a standard co-precipitating procedure using two solutions. The first solution contained 25.6 g of Mg(NO₃)₂ and 12.1 g of Fe(NO₃)₃ on 45 mL of water. The second solution contained 14g of NaOH and 9.54 g of Na₂CO₃ on 70 mL of water. The firs solution is added to the second solution, while vigorously attiring for 4 hours at room temperature. The brown gel was heated at 60°C for 24 hours, the gel was washed with deionized water to pH 8. The solid was dried in an oven at 120°C for 18 hours.

Preparation of Mg(Fe)O mixed oxides

The calcined material was obtained by heating of as-synthesized LDH at 450°C in a tubular furnace under N₂ flow for 8 hours. 7 g of a black solid is stable in air, which was characterized by XRD, IR, nitrogen physisorption and scanning electron microscopy was obtained.

Characterization of Mg-Fe layered double hydroxide (LDH) and Mg(Fe)O mixed oxides

The as-synthesized LDH exhibited Mg-Fe reflections associated with the layered double hydroxide crystal structure. The maxima correspond to typical diffraction by planes (0 0 3), (0 0 6), (0 1 2), (0 1 5), (0 1 8), (1 1 0) and (1 1 3). These planes are similar to those shown by brucite (Figure S1). Calcining the material yields a

Mg(Fe)O mixed oxide with a periclase-like structure with (104) (018) and (113), plane reflections, which are typical of MgO (Figure S2).

General procedure for the synthesis of 1,2,3-triazole 1a

A mixture of catalyst (50 mg) and DMF (3 mL) was placed in a microwave tube having a magnetic stirrer. Subsequently, β -nitroestirene (1 mmol), NaN₃ (1.2 mmol), and sodium ascorbate (50 mg), were added to the mixture, which was heated under microwave irradiation (30 W, 80 °C) during 30 minutes. Then, the material was removed by centrifugation and washed with CH₂Cl₂ (5x5mL). The combined organic extracts were evaporated, giving the corresponding 1,2,3-triazole, which was purified by column chromatography (Hexanes-EtOAc 1:1) and/or recrystallization (CH₂Cl₂-hexanes, 1:2).

General procedure for the synthesis of 1,2,3-triazoles 1b-1h

A mixture of catalyst (50 mg) and EtOH-H₂O (2 mL, 3:1 v/v) was placed in a microwave tube having a magnetic stirrer. Subsequently, alkynes **2b-2h** (1 mmol), benzyl chloride **3** (1.2 mmol), NaN₃ (1.2 mmol), and sodium ascorbate (50 mg), were added to the mixture, which was heated under microwave irradiation (30 W, 80 °C) during 30 minutes. Then, the material was removed by centrifugation and washed with CH₂Cl₂ (5x5mL). The combined organic extracts were evaporated, giving the corresponding 1,2,3-triazole, which was purified by column chromatography (CH₂Cl₂ or hexanes-EtOAc 1:1) and/or recrystallization (CH₂Cl₂-hexanes, 1:2).

3. Characterization data

4-phenyl-1H-1,2,3-triazole (1a).

White solid, yield 60%, mp = 149-151 °C [Lit.¹ mp = 147-148 °C].

NMR ¹H (DMSO-*d6*, 400 MHz): δ = 7.37 (s, 1 H), 7.47 (s, 2 H), 7.88 (d, *J* = 5.0 Hz, 2 H), 8.06-8.67 (m, 1 H), 15.16 (s, 1 H); ¹³C NMR (100 MHz, DMSO-*d*6): δ = 126.04 (2xArCH), 127.73 (ArCH), 128.59 (2xArCH), 129.39 (C_{ipso}), 130.99 (ArCH, triazole), 162.79 (C_{ipso}, triazole).²

1-Benzyl-4-phenyl-1*H*-1,2,3-triazole (1b).

White solid, yield 65%, mp = 129-131 °C [Lit.³ mp = 127-130 °C].

NMR ¹H (CDCl₃, 400 MHz): δ = 5.56 (s, 2H, NCH₂), 7.28-7.32 (m, 3H, ArH), 7.35-7.41 (m, 5H, ArH), 7.65 (s, 1H, ArH, triazole), 7.77-7.80 (m, 2H, ArH); NMR ¹³C (CDCl₃, 100 MHz): δ = 54.2 (NCH₂), 119.5 (ArCH, triazole), 125.7 (2xArCH), 128.1 (2xArCH), 128.2 (ArCH), 128.78 (ArCH), 128.8 (2xArCH), 129.1 (2xArCH), 130.6 (C_{ipso}), 134.7 (C_{ipso}), 148.2 (C_{ipso}, triazole).⁴

White solid, yield 55%, mp = 165-167 °C [Lit.⁵ mp = 167-169 °C].

NMR ¹H (CDCl₃, 400 MHz): δ = 3.89 (s, 3H, OCH₃), 5.61 (s, 2H, NCH₂), 6.97 (dd, *J* = 1.0, 8.3 Hz, 1H, ArH), 7.09 (td, *J* = 1.0, 7.6 Hz, 1H, ArH), 7.30-7.41 (m, 6H, ArH), 8.00 (s, 1H, ArH, triazole), 8.39 (dd, *J* = 1.7, 7.7 Hz, 1H, ArH); NMR ¹³C (CDCl₃, 100 MHz): δ = 53.9 (NCH₂), 55.3 (OCH₃), 110.7 (ArCH, triazole), 119.4 (C_{ipso}), 121.0 (ArCH), 123.0 (ArCH), 127.7 (ArCH), 127.8 (2xArCH), 128.5 (ArCH), 128.9 (ArCH), 129.0 (2xArCH), 135.2 (C_{ipso}), 143.6 (C_{ipso}, triazole), 155.6 (C_{ipso}).⁵

1-benzyl-4-(3-methoxyphenyl)-1H-1,2,3-triazole (1d).

White solid, yield 55%, mp = 158-160 °C

NMR ¹H (CDCl₃, 400 MHz): δ = 3.87 (s, 3H, OCH₃), 5.58 (s, 2H, NCH₂), 6.88 (ddd, *J* = 1.6, 2.6, 7.7 Hz, 1H, ArH), 7.29-7.35 (m, 4H, ArH), 7.38-7.43 (m, 3H, ArH), 7.45 (ddd, *J* = 0.4, 1.3, 2.6 Hz, 1H, ArH), 7.67 (s, 1H, ArH, triazole); NMR ¹³C (CDCl₃, 100 MHz): δ = 54.2 (NCH₂), 55.3 (OCH₃), 110.7 (ArCH, triazole), 114.3 (ArCH), 118.1 (ArCH), 119.7 (ArCH), 128.0 (2xArCH), 128.7 (ArCH), 129.1 (2xArCH), 129.8 (ArCH), 131.8 (C_{ipso}), 134.6 (C_{ipso}), 148.1 (C_{ipso}, triazole), 160.0 (C_{ipso}).⁶

White solid, yield 60%, mp = 144-145 °C [Lit.⁷ mp = 143-144 °C].

NMR ¹H (CDCl₃, 400 MHz): δ = 3.84 (s, 3H, OCH₃), 5.57 (s, 2H, NCH₂), 6.95 (d, *J* = 8.9 Hz, 2H, ArH), 7.31-7.42 (m, 5H, ArH), 7.60 (s, 1H, ArH, triazole), 7.74 (d, *J* = 8.9 Hz, 2H, ArH); NMR ¹³C (CDCl₃, 100 MHz): δ = 54.2 (NCH₂), 55.3 (OCH₃), 114.2 (ArCH, triazole), 118.7 (ArCH), 123.3 (C_{ipso}), 127.0 (2xArCH), 128.0 (2xArCH), 128.7 (2xArCH), 129.1 (2xArCH), 134.8 (C_{ipso}), 148.1 (C_{ipso}, triazole), 159.6 (C_{ipso}).⁷

2-(1-benzyl-1H-1,2,3-triazol-4-yl)aniline (3e).

Yelow solid, yield 50%, mp = 94-96 °C. [Lit.⁸ mp = 97-98 °C].

NMR ¹H (CDCl₃, 400 MHz): δ = 5.50 (br s, 2H, NH₂), 5.55 (s, 2H, NCH₂), 6.62-6.76 (m, 2H, ArH), 7.08 (dd, *J* = 1.55, 8.04 Hz, 1H, ArH), 7.24-7.40 (m, 6H, ArH), 7.65 (s, 1H, ArH, triazole); NMR ¹³C (CDCl₃, 100 MHz): δ = 54.3 (NCH₂), 113.5 (ArCH, triazole), 116.7 (ArCH), 117.2 (ArCH), 119.7 (ArCH), 127.6 (2xArCH), 128.0 (ArCH), 128.7 (2xArCH), 129.0 (ArCH), 129.1(C_{ipso}), 134.5 (C_{ipso}), 145.1 (C_{ipso}, triazole), 148.8 (C_{ipso}, NH₂).⁸

3-(1-benzyl-1H-1,2,3-triazol-4-yl)aniline (1g).

Yelow solid, yield 50%, mp = 149.151 °C. [Lit.⁸ mp = 145-147 °C].

NMR ¹H (CDCl₃, 400 MHz): δ = 3.74 (bs, 2H, NH₂), 5.55 (s, 2H, NCH₂), 6.62 (d, *J* = 6.0 Hz, 1H, ArH), 7.01-7.16 (m, 2H, ArH), 7.26-7.30 (m, 3H, ArH), 7.34 -7.38 (m, 3H, ArH), 7.60 (s, 1H, ArH, triazole); NMR ¹³C (CDCl₃, 100 MHz): δ = 54.1 (NCH₂), 112.1 (ArCH, triazole), 114.8 (ArCH), 115.9 (ArCH), 119.5 (ArCH), 128.0 (2xArCH), 128.7 (ArCH), 128.9 (2xArCH), 129.7 (ArCH), 131.4 (C_{ipso}), 134.7 (C_{ipso}), 146.8 (C_{ipso}, triazole), 148.3(C_{ipso}, NH₂).⁹

4-(1-benzyl-1H-1,2,3-triazol-4-yl)aniline (1h).

Yelow solid, yield 55%, mp = 161-163 °C. [Lit.⁸ mp = 160-161 °C].

NMR ¹H (CDCl₃, 400 MHz): δ = 3.74 (bs, 2H, NH₂), 5.55 (s, 2H, NCH₂), 6.68-6.73 (m, 2H, ArH), 7.27-7.41 (m, 5H, ArH), 7.52 (s, 1H, ArH, triazole), 7.56-7.62 (m, 2H, ArH); NMR ¹³C (CDCl₃, 100 MHz): δ = 54.1 (NCH₂), 115.2 (ArCH, triazole), 118.1 (2xArCH), 121.1 (ArCH), 126.1 (C_{ipso}), 126.9 (2xArCH), 128.0 (2xArCH), 128.7 (2xArCH), 129.1 (C_{ipso}), 134.9 (C_{ipso}, triazole), 146.5(C_{ipso}, NH₂).¹⁰

4. References

- ¹ L.-H. Lu, J.-H. Wu and C.-H. Yang, *J. Chin. Chem.* Soc., 2008, **55**, 414.
- ² H. Zhang, D.-Q. Dong, Z.-L. Wang, *Synthesis*, 2016, **48**, 131.
- ³ P. V. Chavan, K. S. Pandit, U. V. Desai, M. A. Kulkarni, P. P., *RSC Adv.*, 2014, **4**, 42137.
- ⁴ R. González-Olvera, C. I. Urquiza-Castro, G. E. Negrón-Silva, D. Angeles-Beltrán, L. Lomas-Romero, A. Gutiérrez-Carrillo, V. H. Lara, R. Santillan and J. A. Morales-Serna, *RSC Adv.*, 2016, **6**, 63660.
- ⁵ I. P. Silvestri, F. Andemarian, G. N. Khairallah, S.-W. Yap, T. Quach, S. Tsegay, C. M. Williams, R. A. J. O'Hair, P. S. Donnelly and S. J. Williams, *Org. Biomol. Chem.*, 2011, **9**, 6082.
- ⁶ K. Yamaguchi, T. Oishi, T. Katayama, N. Mizuno, *Chem. Eur. J.*, 2009, **15**, 10464.
- ⁷ C. Zhang, B. Huang, Y. Chen and D.-M. Cui, *New J. Chem*, 2013, **37**, 2606.
- ⁸ J. I. Sarmiento-Sánchez, A. Ochoa-Terán, and I. A. Rivero, *ARKIVOC*, 2011, **9**, 177.
- ⁹ K. Namitharan, M. Kumarraja and K. Pitchumani, *Chem. Eur. J.*, 2009, **15**, 2755.
- ¹⁰ K. Lőrincz, P. Kele and Z, Novák, *Synthesis*, 2009, **20**, 3527.