Supplementary Information

Electrospun poly(acrylic acid)/poly(vinyl alcohol) nanofibrous adsorbents for Cu(II) removal from industrial plating wastewater

Jeong-Ann Park^a, Jin-Kyu Kang^b, Seung-Chan Lee^b, Song-Bae Kim^{b,c*}

^a Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea

^b Environmental Functional Materials and Water Treatment Laboratory, Seoul National University, Seoul 08826, Republic of Korea

^c Department of Rural Systems Engineering/Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea

*Corresponding author, E-mail: songbkim@snu.ac.kr; Tel: +82-2-880-4587

Nomenclature

A	modified dose-response model constant
a	adsorbent dose
a _n	apparent density of the nanofibrous adsorbents
a_R	Redlich-Peterson constant
b _n	bulk density of the polymer solution
C_{cap}	removal capacity of the nanofibrous adsorbents
C_e	equilibrium concentration of contaminant in the aqueous solution
C_i	initial concentration of contaminant in the aqueous solution
C_{0}	influent concentration into the fixed-bed column
C_{v}	effluent concentration at the filtrate volume v
g	Redlich-Peterson constant
ΔG^0	change in Gibb's free energy
ΔH^0	change in enthalpy
K_d	distribution coefficient
K_F	Freundlich constant
K_L	Langmuir constant
K_R	Redlich-Peterson constant
K _e	equilibrium constant (dimensionless)
k_{l}	pseudo first-order rate constant
<i>k</i> ₂	pseudo second-order rate constant
1/n	Freundlich constant
M_{f}	mass of the nanofibrous adsorbents used in the filtration experiment

Q_m	maximum adsorption capacity
q _{a,exp}	mass of contaminant removed per unit mass of the nanofibrous adsorbents
q_e	amount of contaminant adsorbed (adsorption capacity) at equilibrium
q_t	amount of contaminant adsorbed (adsorption capacity) at time t
R	gas constant
<i>R</i> ²	determination coefficient
S	selectivity coefficient
SAE	sum of absolute error
ΔS^0	change in entropy
V	filtrate volume
V _{total}	total filtrate volume
Ус	calculated removal capacity from the model
Ye	measured removal capacity from the experiment,
<i>Y</i> e	average of the measured removal capacity
α	initial adsorption rate constant
β	Elovich adsorption constant
χ^2	chi-square coefficient

1. Batch data analysis

Kinetic models:

$$q_{t} = q_{e} (1 - e^{-k_{1}t}), \qquad \text{pseudo first-order}$$

$$q_{t} = k_{2} q_{e}^{2} t / (1 + k_{2} q_{e}t), \qquad \text{pseudo second-order}$$

$$q_{t} = \ln (\alpha \beta) / \beta + \ln t / \beta \qquad \text{Elovich}$$

$$(S1)$$

Thermodynamic models:

$$\Delta G^0 = \Delta H^0 - T \Delta S^0, \qquad (S4)$$

$$\Delta G^0 = -RTlnK_e; \ K_e = \frac{aq_e}{C_e}, \tag{S5}$$

$$\ln\left(K_e\right) = \frac{\Delta S^0}{R} - \frac{\Delta H^0}{RT},$$
 (S6)

Equilibrium isotherm models:

$$q_e = \frac{Q_m K_L C_e}{1 + K_L C_e}, \qquad Langmuir \qquad (S7)$$

$$q_e = K_F C_e^{1/n}$$
, Freundlich (S8)

$$q_e = \frac{K_R C_e}{1 + a_R C_e^{g'}} \quad Redlich - Peterson \tag{S9}$$

In order to obtain parameter values from the models, nonlinear regression was performed using R^2 , χ^2 , and *SAE* as follows:

$$R^{2} = \sum_{i=1}^{m} (y_{c} - \bar{y}_{e})_{i}^{2} \left[\sum_{i=1}^{m} (y_{c} - \bar{y}_{e})_{i}^{2} + \sum_{i=1}^{m} (y_{c} - y_{e})_{i}^{2} \right]$$
(S10)

$$\chi^{2} = \left[(y_{e} - y_{c})^{2} / y_{c} \right]_{i}$$
 (S11)

$$SAE = \sum_{i=1}^{n} |y_c - y_e|_i$$
 (S12)

2. Filtration data analysis

The total mass of Cu(II) injected into the nanofibers during the experiment (M_{total}) was calculated as follows:

$$M_{total} = C_0 V_{total},\tag{S13}$$

The Cu(II) removal capacity of the nanofibers (C_{cap}) was quantified as follows:

$$C_{cap} = \int_{V=0}^{V=V_{total}} (C_0 - C_V) dt,$$
(S14)

The mass of Cu(II) removed per unit mass of the nanofibers $(q_{a,exp})$ was determined as

follows:

$$q_{a,exp} = C_{cap} / M_f, \tag{S15}$$

The modified dose-response model was used to analyze the filtration data as follows:

$$\frac{C_V}{C_0} = 1 - \frac{1}{\left(\frac{C_0 V}{q_{a,mod} M_f}\right)^A + 1}$$
(S16)

Table S1.

Temn		Pseu	do first-o	order			Pseudo s	rder		Elovich					
(°C)	q_e	k_{l}	<i>R</i> ²	SAE	χ^2	q_e	k_2	R^2	SAE	χ^2	α	β	D ²	SAE	χ^2
(°C)	(mg/g)	(/h)				(mg/g)	(g/mg/h)				(mg/g/h)	(g/mg)	Λ^{-}		
15	18.5	0.25	0.94	7.90	5.03	20.9	0.02	0.96	6.41	2.09	19.9	0.27	0.96	4.63	0.86
30	44.9	1.12	0.81	18.01	4.57	48.3	0.03	0.76	24.17	4.91	512.4	0.14	0.59	38.54	8.13
45	45.6	1.34	0.95	11.47	0.77	50.7	0.03	0.95	11.87	1.01	556.8	0.14	0.78	25.97	3.80

Kinetic model parameters determined from the experimental data

Table S2.

Equilibrium model parameters determined from the experimental data

Langmuir				Freundlich					Redlich-Peterson						
q_m (mg/g)	<i>K</i> _L (L/mg)	<i>R</i> ²	SAE	χ^2	<i>K_F</i> (L/g)	1/n	<i>R</i> ²	SAE	χ^2	g	<i>K</i> _{<i>R</i>} (L/g)	a_R (L/mg)	<i>R</i> ²	SAE	χ^2
49.3	0.02	0.961	10.09	1.97	12.5	0.20	0.958	11.6 6	2.60	0.81	156.2	13.5	0.800	16.48	6.60