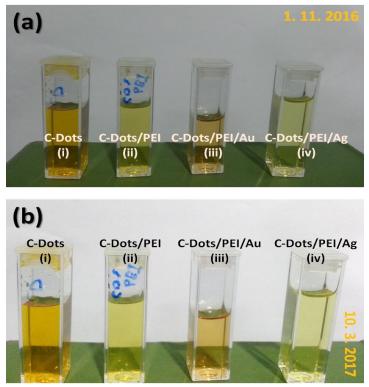
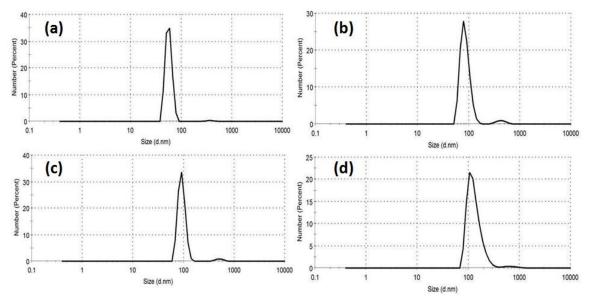
Electronic Supporting Information


for

Cyto-toxicity, Biocompatibility and Cellular Response of Carbon Dots – Plasmonic Based Nano-hybrids for Bioimaging


A. N. Emam,^{a,b}[†] Samah A. Loutfy,^c A. A. Mostafa,^{a,b} H. Awad^d and M. B. Mohamed ^{e, f}

- a) Ceramics and Building Materials Department, National Research Centre, Cairo, Egypt
- ^{b)} Nanomedicine and Tissue Engineering Laboratory, Medical Research Centre of Excellence, National Research Centre (NRC), Cairo, Egypt
- ^{c)} Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- *d)* Tanning Materials and Leather Technology Department, National Research Centre, Cairo, Egypt
- e) National Institute of Laser Enhanced Sciences (NILES), Cairo University, Cairo, Egypt
- ^{f)} Egyptian Nanotechnology Center (EGNC), Cairo University, Zayed City, Giza, Egypt

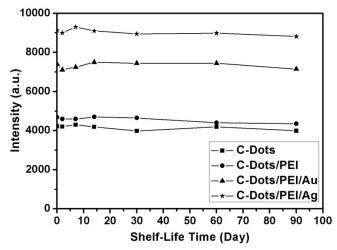

Figures

Fig. S1 Photographs of PEI/C-Dots Hybrid Nanocomposites with both Au NPs and Ag NPs solutions at zero time (a), and after 3 months of preparation (b).

Fig. S2 Hydrodynamic diameter estimated by DLS technique for (a) C-Dots, (b) C-Dots/PEI, (c) C-Dots/PEI/Au and (d) C-Dots/PEI/Ag NanoHybrids.

Fig. S3 The long-term Photoluminescence Stability for C-Dots, C-Dots/PEI, C-Dots/PEI/Au and C-Dots/PEI/Ag hybrid nanocomposites after shelf-life storage up to 3 months.

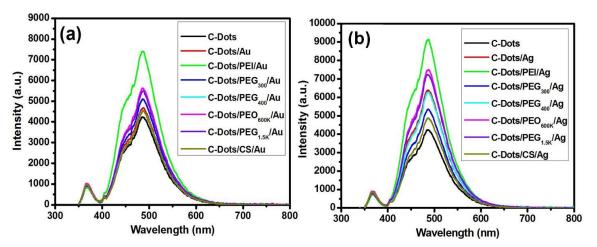
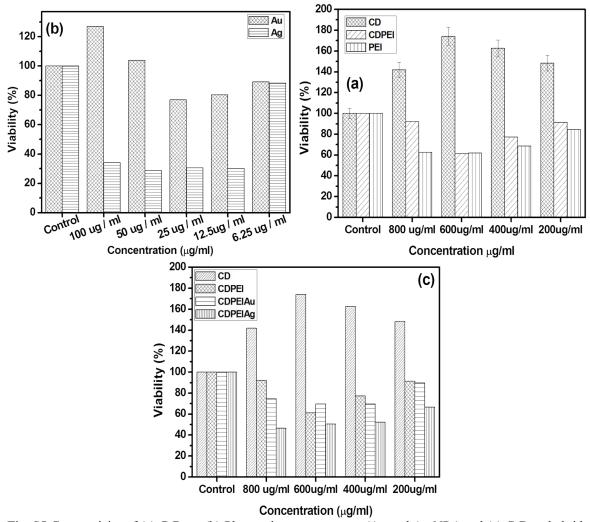
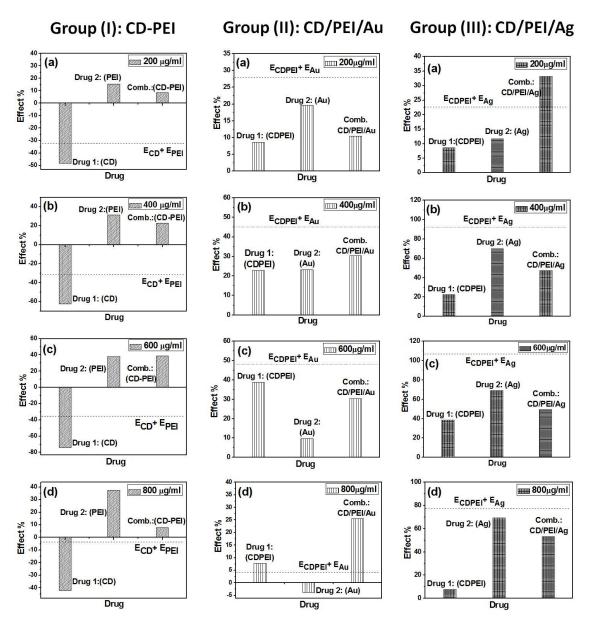




Fig. S4 The Plasmonic Effect on the PLE Properties of C-Dots in Presence of different polymeric spacers upon excitation at steady-state condition ($\lambda_{ex} \sim 366$ nm) for (a) C-Dots/Spacer/Au and (b) C-Dots/Spacer/Ag hybrid nanocomposites.

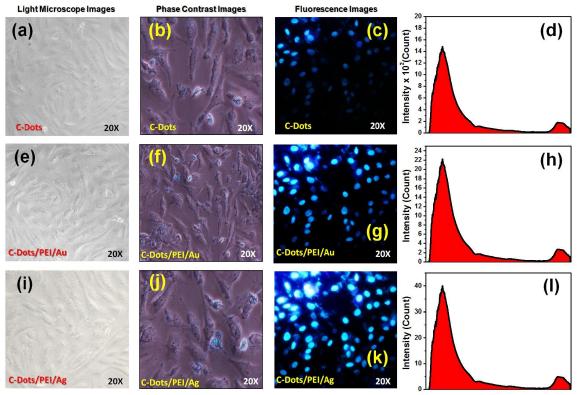

Polymeric Spacer	Au NPs				Ag NPs			
	λ _{ex} ^(a) 366 nm		QY/QY _{Dye} (d)	FWHM ^(e)	λ _{ex} ^(a) 366 nm		QY/QY _{Dye} ^(d)	FWHM ^(e)
	l(p)	/ ₀ (c)	Steady-State	Steady-State λ _{ex} ~ 366 nm	I (b)	/ ₀ (c)	Steady-State	Steady-State
			λ _{ex} ~ 366 nm				λ _{ex} ~ 366 nm	λ _{ex} ~ 366 nr
Pure	(I ₀) 4223.69	-	22.468	33.60484	(I ₀) 4223.69	-	22.468	33.60484
No Spacer	4683.54	1.11	49.669	86.74477	6397.74	1.51	70.876	87.98712
PEI 1.2 K	7403.64	1.75	55.52	30.56937	9134.23	2.16	77.213	17.44447
PEG 300	5103.11	1.21	42.385	28.74657	5358.99	1.27	55.683	86.61188
PEG 400	4541.93	1.08	37.196	27.70977	6271.99	1.49	52.505	27.20729
PEO 600 K	5633.71	1.33	46.31	28.92912	7499.62	1.78	64.795	23.93524
PEG 1.5 K	5490.96	1.30	28.69	48.32572	7236.54	1.71	60.569	27.67129
CS Low M.wt.	4539.02	1.07	37.054	28.27469	4875.24	1.15	37.929	27.93471

Fig. S5 Cyto-toxicity of (a) C-Dots, (b) Plasmonic nanostructures (Au and Ag NPs) and (c) C-Dots hybrid nanocomposites (i.e. CD-PEI, CD/PEI/Au and CD/PEI/Ag) against Vero normal cells by using MTT assays, illustrating percentage cell viability when compared to non-treated cells being arbitrarily assigned 100% viability upon exposing the cells to different concentration for 48 h.

Fig. S6 Cellular response of *Vero Cells*, and the combination approach effect based-on combination index (CI) calculations of the as-prepared hybrid nanocomposites based-on C-Dots including PEI coated C-Dots (Group I), C-Dots/PEI/Au (Group II) and C-Dots/PEI/Ag (Group III) Nanohybrids. *This calculation based on based on Response Additivity model.*

Fig. S7 Bright field (a, e and i), Phase contrast (b, f and j) and fluorescence images (c, g and k) of HepG-2 cells after 24 hr incubation, and the intensity histogram (d, h and l) of fluorescence images. (a, b and c) for C-Dots. (e, f and g) for C-Dots/PEI/Au NanoHybrids. (i, j and k) for C-Dots/PEI/Ag NanoHybrids.

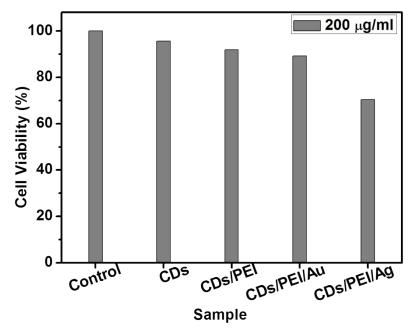


Fig. S8 Cyto-toxicity for each of C-Dots, PEI coated C-Dots, C-Dots/PEI/Au and C-Dots/PEI/Ag NanoHybrids against human liver carcinoma (HepG-2) cell lines based-on MTT assay after exposure to the dose of $200 \ \mu g/ml$.