Impact of rare-earth metal oxide (Eu₂O₃) on the electrochemical properties of polypyrrole/CuO polymeric composite for supercapacitor application

Mandira Majumder^a, Ram Bilash Choudhary^{a*}, Anukul. K. Thakur^a, Indrapal Karbhal^b

^aNanostructured Composite Materials Laboratory, Department of Applied Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India.

^bPhysical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.

*Corresponding author: R.B. Choudhary E-mail: <u>rbcism@gmail.com</u> and <u>rbchec@yahoo.co.in</u>. Galvanostatic charge-discharge (GCD) plots for the other two ternary nanocomposites viz. PPY/CuO/Eu₂O₃-1 (10 weight % of Eu₂O₃) and PPY/CuO/Eu₂O₃-3 (50 weight % of Eu₂O₃).

Fig. S1. GCD plots of (a) $PPY/CuO/Eu_2O_3-1$ ternary nanocomposite and (b) $PPY/CuO/Eu_2O_3-3$ ternary nanocomposite at the various current densities.

Fig. S1 shows the comparative GCD curves of PPY/CuO/Eu₂O₃ ternary nanocomposites with 10 % and 50 % Eu₂O₃ at various current densities denoted by PPY/CuO/Eu₂O₃-1 and PPY/CuO/Eu₂O₃-3 respectively. The specific capacitance PPY/CuO/Eu₂O₃-1 with 10 % Eu₂O₃ was obtained to be 201 F g⁻¹, and PPY/CuO/Eu₂O₃-3 with 50 % Eu₂O₃ exhibited a specific capacitance value of 238 F g⁻¹. Increasing the Eu₂O₃ content in the ternary nanocomposite from 10 % to 30 % resulted in the enhancement of the specific capacitance. However, further increase in the Eu₂O₃ content proved to be deteriorating the optimum synergy availed between the various components of the ternary nanocomposite. Excess addition of Eu₂O₃ results into jamming of the mesoporous conducting network which otherwise facilitated the charge transfer easily. This results into the increased charge transfer resistance (Rct) and eventually to a reduced capacitance value. Also, addition of Eu₂O₃ beyond a certain limit results into increased resistance of the active

material which leads to a decrease in the specific capacitance. Moreover, the charge transfer complex that could have been formed at an optimum amount of Eu_2O_3 inclusion may have been destroyed due to excessive presence of Eu_2O_3 . This leads to reduction in the electron donating tendency of PPY and protonation of PPY, consequently decreasing the specific capacitance value [1,2].

Fig. S2 (a) FE-SEM image of CuO particles and (b) Eu₂O₃ nanoparticles.

CV and GCD plots for the PPY, PPY/CuO, and PPY/CuO/Eu₂O₃-2 ternary nanocomposite in three-electrode system.

CV (at the scan rate of 200 mV s⁻¹) and GCD (at the current density of 1 A g⁻¹) of the PPY, PPY/CuO, and PPY/CuO/Eu₂O₃-2 ternary nanocomposite was performed as shown in Fig. S3. The CV was recorded in the potential -0.2 - 0.8 V and the GCD was recorded in the potential of 0 - 0.8 V. Pure PPY and PPY/CuO exhibited specific capacitance (as calculated from the GCD data) values of 130 and 223 F g⁻¹, respectively. PPY/CuO/Eu₂O₃ showed an enhancement in the specific capacitance value i. e. 380 F g⁻¹.

Fig. S3 The electrochemical performances of PPY, PPY/CuO, and PPY/CuO/Eu₂O₃ nanocomposites in a three-electrode system (a) CV curves @ 200 mV s⁻¹ and (b) GCD plots at 1 A g⁻¹.

References

- 1. W. Sun and Z. Mo, Mat. Sci. Eng. B, 2013, 178, 527-532.
- 2. H. M. Shiri and A. Ehsani, J. Colloid and Interface Sci., 2016, 473, 126-131.