Supporting Information

Three Sandwich-type Zinc(II)-Lanthanide(III) Clusters: Structures,

Luminescence and Magnetic properties

Xue-Qin Song,*^a Pan-Pan Liu,^a Cai-yun Wang^a, Yuan-An Liu,^a Wei-Sheng Liu,^b and Mo Zhang^a

Table S1. Crystal data and structure refinement parameters for compound $Zn_{2}^{\parallel}Eu_{4}^{\parallel}$, $Zn_{2}^{\parallel}Tb_{4}^{\parallel}$ and $Zn_{2}^{\parallel}Dy_{4}^{\parallel}$.

	Zn ^{II} ₂ Eu ^{III} ₄	Zn ^{II} ₂ Tb ^{III} ₄	Zn ^{II} ₂ Dy ^{III} ₄	
Empirical formula	$Zn_2Eu_4C_{94}H_{114}N_{10}O_{42}$	$Zn_{2}Tb_{4}C_{94}H_{114}N_{10}O_{42}$	$Zn_2Dy_4C_{94}H_{114}N_{10}O_{42}$	
Formula weight	2794.62	2822.46	2836.74	
Temperature	293(2)	293(2)	293(2)	
Crystal system, space group	Monoclinic, P2 ₁ /n	Monoclinic, P2 ₁ /n	Monoclinic, P2 ₁ /n	
	<i>a</i> = 16.6693(5)Å	<i>a</i> = 16.5858(3)Å	a = 16.513(3)Å	
Unit cell dimensions	<i>b</i> = 17.1718(5) Å	<i>b</i> = 17.2083(3) Å	<i>b</i> = 17.241(3) Å	
	<i>c</i> = 20.9256(7) Å	<i>c</i> = 21.1240(4) Å	c = 23.807(8) Å	
	<i>θ</i> = 102.3553°	<i>θ</i> = 102.2803°	<i>θ</i> = 120.282°	
Volume (ų), Z	5851.1(13), 2	5891.11(91), 2	5853(3), 2	
Absorption coefficient	2.599 mm ⁻¹	2.853 mm ⁻¹	3.008 mm ⁻¹	
F(000)	2792	2808	2816	
artheta range for data collection	3.69 to 26.01	3.47 to 25.50	3.45 to 25.50	
the later is direct	-20 ≤ h ≤ 16	-9 ≤ h ≤ 20	-19 ≤ h ≤ 20	
Limiting indices	-21 ≤ k ≤ 19	-20 ≤ k ≤ 12	-20 ≤ k ≤ 19	
	-25 ≤ ≤ 22	-25 ≤ l ≤ 25	-25 ≤ l ≤ 28	
R _{int}	0.0523	0.0577	0.0682	
Reflections collected unique	21584/11508	21520/10920	25663/10859	
Completeness	99.7 %	99.8 %	99.8 %	
Absorption correction	Multi-Scan	Multi-Scan	Multi-Scan	
Data/restraints /parameters	11508 / 828 /695	10920/861/698	10859/86/697	
Goodness-of-fit on F ²	1.040	1.05	1.048	
Final R indices [I>2sigma(I)]	R ₁ = 0.0571, wR ₂ = 0.2349	R ₁ = 0.0577, wR ₂ =0.1685	R ₁ = 0.0682, wR ₂ =0.1524	
R indices (all data)	R ₁ = 0.1419, wR ₂ = 0.1711	R ₁ = 0.1480, wR ₂ =0.1711	R ₁ = 0.0873, wR ₂ =0.1623	
Largest diff. peak and hole	2.231 and -1.260 (e·Å ⁻³)	2.368 and -1.366(e·Å ⁻³)	3.286 and -4.505(e·Å⁻³)	

[Zn ₂ Eu ₄ (HL) ₄ (o-Vanilline) ₂ (OH) ₄]2NO ₃ ·4CH ₃ OH (Zn ^{II} ₂ Eu ^{III} ₄)											
Eu1–015	2.345(5)	Eu1-014	2.358(5)	Eu1-03	2.375(6)	Eu1–O2	2.376(6)	Eu1-015	2.384(5)		
Eu1-011	2.399(6)	Eu1-016	2.416(6)	Eu1-012	2.439(5)	Eu2–07	2.242(6)	Eu2-015	2.378(5)		
Eu2–O8	2.382(6)	Eu2-09	2.396(6)	Eu2-012	2.447(5)	Eu2-014	2.496(5)	Eu2-02	2.496(5)		
Eu2–O13	2.655(6)	Zn1-014	2.002(6)	Zn1-04	2.072(6)	Zn1–N4	2.074(7)	Zn1–N2	2.091(7)		
Zn1– 09	2.100(6)										
$[Zn_2Tb_4(HL)_4(o-Vanilline)_2(OH)_4]2NO_3 \cdot 4CH_3OH (Zn^{II}_2Tb^{III}_4)$											
Tb–O4	2.211(6)	Tb-014	2.352(6)	Tb-O2	2.360(6)	Tb-O3	2.362(6)	Tb-011	2.408(6)		
Tb–O7	2.467(6)	Tb-O16	2.485(6)	Tb-012	2.650(6)	Tb2-014	2.301(6)	Tb2-016	2.327(6)		
Tb2–O8	2.341(6)	Tb2–07	2.347(6)	Tb2-013	2.371(6)	Tb2-014	2.376(5)	Tb2-015	2.392(6)		
Tb2–O11	2.421(6)	Zn-016	2.001(6)	Zn1–N1	2.071(8)	Zn-09	2.072(6)	Zn–N4	2.098(8)		
Zn1–O2	2.109(6)										
[Zn ₂ Dy ₄ (HL) ₄ (o-Vanilline) ₂ (OH ₁₄]2NO ₃ ·4CH ₃ OH (Zn ^{II} ₂ Dy ^{III} ₄)											
Dy-011	2.301(6)	Dy-015	2.322(6)	Dy1-07	2.343(6)	Dy-08	2.352(6)	Dy-011	2.353(6)		
Dy-013	2.354(6)	Dy1-016	2.377(6)	Dy1-012	2.422(6)	Dy2-02	2.189(7)	Dy2-01	2.333(7)		
Dy2-011	2.345(6)	Dy2-04	2.359(6)	Dy2-012	2.385(6)	Dy2-015	2.458(6)	Dy2–07	2.460(7)		
Dy2-014	2.645(6)	Zn1-015	2.004(6)	Zn1–N2	2.058(9)	Zn–N4	2.071(8)	Zn09	2.084(7)		
Zn1–04	2.101(7)										

Table S2. Important bond lengths for compound $Zn_{2}^{II}Eu_{4}^{III}$, $Zn_{2}^{II}D_{4}^{III}$ and $Zn_{2}^{II}Dy_{4}^{III}$.

Figure S1. TG curves for $Zn_{2}^{II}Dy_{4}^{III}$.

Figure S2. Comparing the simulated PXRD (black) and experimental patterns of compounds $Zn_{2}^{II}Eu_{4}^{III}$, $Zn_{2}^{II}D_{4}^{III}$ and $Zn_{2}^{II}Dy_{4}^{III}$.

Figure S3 Coordination polyhedron of Dy^{III} in $Zn^{II}_{2}Dy^{III}_{4}$.

Figure S4 Excitation spectra of $Zn_{2}^{\parallel}Eu_{4}^{\parallel}at$ room temperature.

Figure S5 Emission decay curves of Zn^{II}₂Eu^{III}₄.

Figure S6 Emission decay curves of Zn^{II}₂Tb^{III}₄.

Figure S7 Emission decay curves of Zn^{II}₂Dy^{III}₄.

Figure S8 Emission spectra of different wavelength exciation for Zn^{II}₂Eu^{III}₄.

Figure S9 Emission spectra of different wavelength exciation for Zn^{II}₂Tb^{III}₄.

Figure S10 Emission spectra of different wavelength excition for $Zn^{II}_{2}Dy^{III}_{4}$.