Supporting Information

A Quantum Chemical Study on •Cl-initiated Atmospheric Degradation of Acrylonitrile

Jingyu Sun^{1*}, Youxiang Shao², Wenzhong Wu³, Yizhen Tang⁴, Yunju Zhang⁵,

Yiming Hu¹, Jiangyan Liu¹, Huiyang Yi¹, Fang Chen¹, Yinfang Cheng¹

¹Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of

Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei

Normal University, Cihu Road 11, Huangshi, Hubei 435002, P. R. China

²School of Materials Science and Engineering, MOE Key Laboratory of Bioinorganic and

Synthetic Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China

³College of Foreign Languages, Hubei Normal University, Cihu Road 11, Huangshi, Hubei

435002, P. R. China

⁴School of Environmental and municipal Engineering, Qingdao Technological University, Fushun Road 11. Qingdao, Shandong, 266033 P.R. China.

⁵Key Laboratory of Photoinduced Functional Materials, Mianyang Normal University, Mianyang

621000, PR China

^{*} Corresponding author. Email address: sunjy231@gmail.com Tel.:; Fax: 0714-6515602

Fig. S1 Optimized geometries (length in Å and angle in degree) for other intermediates, transition states, and products as shown in (a) and (b). The experimental data are in *Italic*.

Fig.S2 Potential energy diagram of the unimportant reaction channels (a) and (b) at the UCCSD(T)/cc-PVTZ//M05-2X/6-311++G(d,p) level.

Fig. S3 Temperature dependence of the rate constants at other theoretical methods (a) at 760 Torr N_2 ; (b) at 1 Torr He.

Species	ΔE^{a}	ΔE^{b}
R: CH ₂ =CHCN+Cl	0.00	0.00
P3:H+CICHCHCN	18.02	19.63
P4:CH ₂ ClC+HCN	71.85	73.30
P5:H+CH ₂ CCICN	20.95	22.12
P6:CH ₂ CH+ClCN	33.19	31.19
P7:C ₂ H ₂ +HNCCl	38.14	39.09
IM3	23.65	29.10
IM4	-18.20	-14.62
IM5	-26.69	-22.49
IM6	17.49	23.19
TS2	25.08	25.31
TS3	90.16	90.06
TS4	28.16	31.91
TS5	31.09	31.07
TS6	33.34	36.50
TS7	23.72	27.56
TS8	26.34	29.27
c-IM1	-8.70	-4.28
c-IM2	8.28	12.97
c-IM3	10.57	15.15
c-TS1	1.40	5.03
c-TS2	36.67	38.05
c-TS3	44.14	48.55
c-TS4	56.92	60.70
c-TS5	43.82	47.22

Table S1. Relative energies(ΔE) for the other species (energies in kcal mol⁻¹).

 ${}^{a}M05\text{-}2X/6\text{-}311\text{+}+G(d,p); {}^{b}UCCSD\text{-}ccPVTZ//M05\text{-}2X/6\text{-}311\text{+}+G(d,p)$

Species	Coordinates(Atom, X, Y, Z)			, Y, Z)	Rotational constants(cm ⁻¹)	Frequencies		
	C	-0.005245	0.000000	-0.005592	1.669, 0.168, 0.152	237, 353, 586, 720, 892, 1014,		
	Н	0.005412	0.000000	1.074545		1027, 1124, 1333, 1463,1717,		
	Н	0.942153	0.000000	-0.525485		2413, 3197, 3230, 3294		
CH ₂ =CHCN	C	-1.157515	0.000000	-0.667452				
	Н	-2.111380	0.000000	-0.158610				
	C	-1.208053	0.000000	-2.099112				
	N	-1.264285	0.000000	-3.245738				
Cl	Cl	-2.192771	-0.373494	0.000000				
	C	0.492511	0.720855	0.471412	0.392, 0.065, 0.059	53, 215, 290, 428, 561, 636,		
	Н	0.226236	0.441788	1.483835		720, 870, 1042, 1153, 1217,		
	Н	0.957050	1.701085	0.450880		1303, 1416, 1505, 2240, 3134,		
IN/1	C	-0.657625	0.642953	-0.452590		3213, 3250		
	Н	-0.581900	1.062469	-1.443967				
	C	-1.812983	-0.052112	-0.112001				
	N	-2.778996	-0.615915	0.187887				
	Cl	1.781101	-0.443004	-0.068243				

Table S2 The coordinates, rotational constants, and harmonic frequencies of reactants and IM1

<i>T</i> (K)	k^a	k ^b	k^c	k^d	k^e	kſ	$k^{ m g}$	k^h	k ⁱ	k ^j	k ^m	k^n
200	3.15 ×10 ⁻¹⁰	4.09 ×10 ⁻¹¹	3.14 ×10 ⁻¹⁵	5.61 ×10 ⁻⁹	1.19 ×10 ⁻⁸	1.92 ×10 ⁻⁹	1.78 ×10 ⁻⁹	1.98 ×10 ⁻⁹	1.66 ×10 ⁻⁹	1.31 ×10 ⁻⁹	8.74 ×10 ⁻¹⁰	
220	2.55 ×10 ⁻¹⁰	2.76 ×10 ⁻¹¹	1.47 ×10 ⁻¹⁵	3.85 ×10 ⁻⁹	7.82 ×10 ⁻⁹	1.43 ×10 ⁻⁹	1.29 ×10 ⁻⁹	1.49 ×10 ⁻⁹	1.27 ×10 ⁻⁹	9.62 ×10 ⁻¹⁰	6.09 ×10 ⁻¹⁰	
240	2.0 ×10 ⁻¹⁰	1.88 ×10 ⁻¹¹	7.25 ×10 ⁻¹⁶	2.65 ×10 ⁻⁹	5.21 ×10 ⁻⁹	1.06 ×10 ⁻⁹	9.31 ×10 ⁻¹⁰	1.12 ×10 ⁻⁹	9.65 ×10 ⁻¹⁰	7.04 ×10 ⁻¹⁰	4.26 ×10 ⁻¹⁰	
260	1.60 ×10 ⁻¹⁰	1.28 ×10 ⁻¹¹	3.75 ×10 ⁻¹⁶	1.84 ×10 ⁻⁹	3.51 ×10 ⁻⁹	7.90 ×10 ⁻¹⁰	6.75 ×10 ⁻¹⁰	8.36 ×10 ⁻¹⁰	7.30 ×10 ⁻¹⁰	5.15 ×10 ⁻¹⁰	2.99 ×10 ⁻¹⁰	
280	1.25 ×10 ⁻¹⁰	8.82 ×10 ⁻¹²	2.03 ×10 ⁻¹⁶	1.29 ×10 ⁻⁹	2.39 ×10 ⁻⁹	5.85 ×10 ⁻¹⁰	4.89 ×10 ⁻¹⁰	6.24 ×10 ⁻¹⁰	5.51 ×10 ⁻¹⁰	3.76 ×10 ⁻¹⁰	2.11 ×10 ⁻¹⁰	
298	9.9 ×10 ⁻¹⁰	6.33 ×10 ⁻¹²	1.21 ×10 ⁻¹⁶	9.36 ×10 ⁻¹⁰	1.70 ×10 ⁻⁹	4.46 ×10 ⁻¹⁰	3.66 ×10 ⁻¹⁰	4.78 ×10 ⁻¹⁰	4.27 ×10 ⁻¹⁰	2.83 ×10 ⁻¹⁰	1.54 ×10 ⁻¹⁰	(1.11±0.23)×10 ⁻¹⁰
318	7.62 ×10 ⁻¹⁰	4.39 ×10 ⁻¹²	7.04 ×10 ⁻¹⁷	6.61 ×10 ⁻¹⁰	1.18 ×10 ⁻⁹	3.30 ×10 ⁻¹⁰	2.66 ×10 ⁻¹⁰	3.56 ×10 ⁻¹⁰	3.21 ×10 ⁻¹⁰	2.07 ×10 ⁻¹⁰	1.10 ×10 ⁻¹⁰	
333	6.24 ×10 ⁻¹⁰	3.35 ×10 ⁻¹²	4.79 ×10 ⁻¹⁷	5.11 ×10 ⁻¹⁰	8.98 ×10 ⁻¹⁰	2.63 ×10 ⁻¹⁰	2.10 ×10 ⁻¹⁰	2.85 ×10 ⁻¹⁰	2.59 ×10 ⁻¹⁰	1.64 ×10 ⁻¹⁰	8.49 ×10 ⁻¹¹	
500	6.09 ×10 ⁻¹²	9.51 ×10 ⁻¹⁴	1.50 ×10 ⁻¹⁸	3.39 ×10 ⁻¹¹	5.48 ×10 ⁻¹¹	2.20 ×10 ⁻¹¹	1.58 ×10 ⁻¹¹	2.45 ×10 ⁻¹¹	2.36 ×10 ⁻¹¹	1.28 ×10 ⁻¹¹	5.49 ×10 ⁻¹²	
600	9.53 ×10 ⁻¹³	4.90 ×10 ⁻¹⁵	2.92 ×10 ⁻¹⁹	5.91 ×10 ⁻¹²	9.79 ×10 ⁻¹²	4.03 ×10 ⁻¹²	2.48 ×10 ⁻¹²	4.71 ×10 ⁻¹²	4.98 ×10 ⁻¹²	2.14 ×10 ⁻¹²	6.38 ×10 ⁻¹³	
800	3.00 ×10 ⁻¹⁵	3.38 ×10 ⁻¹⁷	1.88 ×10 ⁻²⁰	1.79 ×10 ⁻¹⁴	3.06 ×10 ⁻¹⁴	1.30 ×10 ⁻¹⁴	7.04 ×10 ⁻¹⁵	1.60 ×10 ⁻¹⁴	2.10 ×10 ⁻¹⁴	6.89 ×10 ⁻¹⁵	1.91 ×10 ⁻¹⁵	
1000	2.85 ×10 ⁻¹⁷	8.40 ×10 ⁻¹⁹	1.89 ×10 ⁻²¹	1.19 ×10 ⁻¹⁶	1.85 ×10 ⁻¹⁶	9.37 ×10 ⁻¹⁷	5.72 ×10 ⁻¹⁷	1.11 ×10 ⁻¹⁶	1.40 ×10 ⁻¹⁶	5.68 ×10 ⁻¹⁷	2.03 ×10 ⁻¹⁷	
1200	7.81 ×10 ⁻¹⁹	4.46 ×10 ⁻²⁰	2.53 ×10 ⁻²²	2.55 ×10 ⁻¹⁸	3.73 ×10 ⁻¹⁸	2.13 ×10 ⁻¹⁸	1.41 ×10 ⁻¹⁸	2.45 ×10 ⁻¹⁸	3.00 ×10 ⁻¹⁸	1.41 ×10 ⁻¹⁸	6.06 ×10 ⁻¹⁹	
1400	4.17 ×10 ⁻²⁰	3.84 ×10 ⁻²¹	4.21 ×10 ⁻²³	1.15 ×10 ⁻¹⁹	1.60 ×10 ⁻¹⁹	9.96 ×10 ⁻²⁰	7.00 ×10 ⁻²⁰	1.12 ×10 ⁻¹⁹	1.35 ×10 ⁻¹⁹	7.06 ×10 ⁻²⁰	3.44 ×10 ⁻²⁰	

Table S3 The rate constants at various methods in the temperature of 200-3000 K and at 760 Torr N₂. (k is in cm³ molecule⁻¹s⁻¹)

1600	3.50	4.61	8.27	8.44	1.14	7.56	5.56	8.40	9.91	5.64	3.02	
1000	×10 ⁻²¹	×10-22	×10 ⁻²⁴	×10 ⁻²¹	×10 ⁻²⁰	×10 ⁻²¹						
1200	4.06	7.10	1.86	8.85	1.16	8.13	6.18	8.92	1.04	6.30	3.64	
1800	×10 ⁻²²	×10 ⁻²³	×10 ⁻²⁴	×10 ⁻²²	×10 ⁻²¹	×10 ⁻²²	×10 ⁻²²	×10 ⁻²²	×10 ⁻²¹	×10 ⁻²²	×10 ⁻²²	
2000	6.01	1.32	4.69	1.21	1.55	1.13	8.87	1.23	1.43	9.08	5.57	
2000	×10 ⁻²³	×10 ⁻²³	×10 ⁻²⁵	×10 ⁻²²	×10 ⁻²²	×10 ⁻²²	×10 ⁻²³	×10 ⁻²²	×10 ⁻²²	×10 ⁻²³	×10 ⁻²³	
2200	1.08	2.87	1.30	2.04	2.57	1.94	1.55	2.09	2.40	1.59	1.03	
2200	×10 ⁻²³	×10 ⁻²⁴	×10 ⁻²⁵	×10 ⁻²³								
2400	2.27	7.04	3.93	4.05	5.03	3.91	3.19	4.19	4.79	3.29	2.21	
2400	×10 ⁻²⁴	×10 ⁻²⁵	×10 ⁻²⁶	×10 ⁻²⁴								
2600	5.42	1.92	1.27	9.22	1.13	9.02	7.47	9.61	1.09	7.73	5.37	
2000	×10 ⁻²⁵	×10 ⁻²⁵	×10 ⁻²⁶	×10 ⁻²⁵	×10 ⁻²⁴	×10 ⁻²⁵	×10 ⁻²⁵	×10 ⁻²⁵	×10 ⁻²⁴	×10 ⁻²⁵	×10 ⁻²⁵	
2800	1.44	5.72	4.40	2.36	2.87	2.33	1.95	2.47	2.80	2.03	1.45	
2800	×10 ⁻²⁵	×10 ⁻²⁶	×10 ⁻²⁷	×10 ⁻²⁵								
2000	4.21	1.84	1.61	6.64	8.00	6.62	5.62	6.99	7.90	5.85	4.30	
3000	×10 ⁻²⁶	×10 ⁻²⁶	×10 ⁻²⁷	×10 ⁻²⁶								

^aB3LYP/6-311++G(d,p);^bBHandHLYP/6-311++G(d,p);^cMP2/6-311++G(d,p);^dM11/6-311++G(d,p);^eMN12SX/6-311++G(d,p);^fM06-2X/6-311++G(d,p); ^gBMC-CCSD//M06-2X/6-311++G(d,p);^jBMC-CCSD//M05-2X/6-311++G(d,p); ^gBMC-CCSD//M05-2X/6-311++G(d,p); ^gBMC-CCSD//M0

<i>T</i> (K)	ka	k ^b	k°	k ^d	ke	k ^f	$k^{ m g}$	k ^h
200	3.08×10 ⁻¹¹	1.56×10 ⁻¹¹	2.72×10 ⁻¹²	2.97×10 ⁻¹¹	9.33×10 ⁻¹²	1.44×10 ⁻¹¹	9.91×10 ⁻¹²	
220	2.04×10-11	1.03×10-11	1.78×10 ⁻¹²	1.95×10-11	6.05×10 ⁻¹²	9.45×10 ⁻¹²	6.58×10 ⁻¹²	
240	1.37×10-11	6.89×10 ⁻¹²	1.19×10 ⁻¹²	1.30×10-11	4.00×10 ⁻¹²	6.32×10 ⁻¹²	4.44×10 ⁻¹²	
260	9.38×10 ⁻¹²	4.70×10 ⁻¹²	8.12×10 ⁻¹³	8.85×10 ⁻¹²	2.70×10 ⁻¹²	4.29×10 ⁻¹²	3.04×10 ⁻¹²	(1.27±0.08)×10 ⁻¹¹
280	6.49×10 ⁻¹²	3.25×10 ⁻¹²	5.59×10 ⁻¹³	6.10×10 ⁻¹²	1.84×10 ⁻¹²	2.96×10 ⁻¹²	2.11×10 ⁻¹²	(8.2±0.9)×10 ⁻¹²
298	4.71×10 ⁻¹²	2.35×10 ⁻¹²	4.04×10 ⁻¹³	4.40×10 ⁻¹²	1.32×10 ⁻¹²	2.14×10 ⁻¹²	1.53×10 ⁻¹²	(6.0±0.9)×10 ⁻¹²
318	3.33×10 ⁻¹²	1.66×10 ⁻¹²	2.84×10 ⁻¹³	3.10×10 ⁻¹²	9.25×10 ⁻¹³	1.50×10 ⁻¹²	1.08×10 ⁻¹²	(5.0±0.3)×10 ⁻¹²
333	2.58×10-12	1.28×10 ⁻¹²	2.19×10 ⁻¹³	2.39×10 ⁻¹²	7.12×10 ⁻¹³	1.16×10 ⁻¹²	8.33×10 ⁻¹³	(3.5±0.2)×10 ⁻¹²
500	1.86×10 ⁻¹³	8.88×10 ⁻¹⁴	1.38×10 ⁻¹⁴	1.65×10 ⁻¹³	4.66×10 ⁻¹⁴	8.07×10 ⁻¹⁴	5.41×10 ⁻¹⁴	
600	2.88×10 ⁻¹⁴	1.01×10 ⁻¹⁴	1.02×10 ⁻¹⁵	2.09×10 ⁻¹⁴	4.75×10 ⁻¹⁵	1.08×10 ⁻¹⁴	4.35×10 ⁻¹⁵	
800	5.33×10 ⁻¹⁷	1.83×10 ⁻¹⁷	2.14×10 ⁻¹⁸	3.42×10 ⁻¹⁷	7.84×10 ⁻¹⁸	1.79×10-17	7.97×10 ⁻¹⁸	
1000	3.46×10 ⁻¹⁹	1.49×10 ⁻¹⁹	2.27×10 ⁻²⁰	2.43×10 ⁻¹⁹	6.30×10 ⁻²⁰	1.22×10 ⁻¹⁹	7.49×10 ⁻²⁰	
1200	7.45×10 ⁻²¹	3.72×10 ⁻²¹	6.79×10 ⁻²²	5.56×10 ⁻²¹	1.56×10 ⁻²¹	2.72×10 ⁻²¹	2.06×10 ⁻²¹	
1400	3.35×10-22	1.86×10-22	3.87×10 ⁻²³	2.61×10-22	7.78×10 ⁻²³	1.25×10-22	1.10×10 ⁻²²	
1600	2.47×10 ⁻²³	1.49×10 ⁻²³	3.40×10 ⁻²⁴	1.98×10 ⁻²³	6.18×10 ⁻²⁴	9.35×10 ⁻²⁴	9.26×10 ⁻²⁴	
1800	2.59×10 ⁻²⁴	1.66×10 ⁻²⁴	4.10×10 ⁻²⁵	2.13×10 ⁻²⁴	6.88×10 ⁻²⁵	9.94×10 ⁻²⁵	1.08×10 ⁻²⁴	
2000	3.55×10-25	2.40×10-25	6.28×10 ⁻²⁶	2.97×10-25	9.87×10 ⁻²⁶	1.37×10-25	1.59×10 ⁻²⁵	
2200	5.99×10 ⁻²⁶	4.21×10 ⁻²⁶	1.16×10 ⁻²⁶	5.09×10 ⁻²⁶	1.73×10 ⁻²⁶	2.33×10 ⁻²⁶	2.86×10 ⁻²⁶	
2400	1.19×10 ⁻²⁶	8.67×10-27	2.48×10-27	1.02×10 ⁻²⁶	3.54×10-27	4.67×10 ⁻²⁷	6.01×10 ⁻²⁷	
2600	2.72×10 ⁻²⁷	2.04×10-27	6.04×10 ⁻²⁸	2.36×10 ⁻²⁷	8.30×10 ⁻²⁸	1.07×10 ⁻²⁷	1.43×10 ⁻²⁷	
2800	6.96×10 ⁻²⁸	5.35×10 ⁻²⁸	1.63×10 ⁻²⁸	6.10×10 ⁻²⁸	2.17×10 ⁻²⁸	2.75×10 ⁻²⁸	3.81×10 ⁻²⁸	
3000	1.96×10 ⁻²⁸	1.54×10 ⁻²⁸	4.82×10 ⁻²⁹	1.73×10 ⁻²⁸	6.24×10 ⁻²⁹	7.77×10 ⁻²⁹	1.11×10-28	

Table S4 The rate constants at various methods in the temperature of 200-3000 K and at 1.0 Torr He. (k is in cm³ molecule⁻¹s⁻¹)

^{*a*}M05-2X/6-311++G(d,p);^bBMC-CCSD//M05-2X/6-311++G(d,p);^cUCCSD(T)/cc-PVTZ//M05-2X/6-311++G(d,p);^dM06-2X/6-311++G(d,p);^eBMC-CCSD//M06-2X/6-311++G(d,p);^fUCCSD(T)/cc-PVTZ//M06-2X/6-311++G(d,p);^gB3LYP/6-311++G(d,p);^hexperimental data

P(Torr)	ka	k ^b	k° (k ^d	ke	kf (k ^g	k ^h
10-5	4.78×10 ⁻¹⁷	2.37×10 ⁻¹⁷	4.05×10 ⁻¹⁸	1.77×10 ⁻¹⁷	1.33×10 ⁻¹⁷	2.15×10 ⁻¹⁷	1.67×10 ⁻¹⁷	
10-4	4.78×10 ⁻¹⁶	2.37×10 ⁻¹⁶	4.05×10-17	1.77×10 ⁻¹⁶	1.33×10 ⁻¹⁶	2.15×10-16	1.67×10 ⁻¹⁶	
10-3	4.78×10 ⁻¹⁵	2.37×10 ⁻¹⁵	4.05×10 ⁻¹⁶	1.77×10 ⁻¹⁵	1.33×10 ⁻¹⁵	2.15×10-15	1.67×10 ⁻¹⁵	
0.01	4.78×10 ⁻¹⁴	2.37×10 ⁻¹⁴	4.05×10 ⁻¹⁵	1.77×10 ⁻¹⁴	1.33×10 ⁻¹⁴	2.15×10 ⁻¹⁴	1.67×10 ⁻¹⁴	
0.5	2.37×10 ⁻¹²	1.18×10 ⁻¹²	2.02×10 ⁻¹³	8.84×10 ⁻¹³	6.63×10 ⁻¹³	1.07×10 ⁻¹²	7.94×10 ⁻¹³	(3.0±0.9)×10 ⁻¹²
1	4.71×10 ⁻¹²	2.35×10 ⁻¹²	4.04×10 ⁻¹³	1.76×10 ⁻¹²	1.32×10 ⁻¹²	2.14×10 ⁻¹²	1.53×10 ⁻¹²	(6.0±0.9)×10 ⁻¹²
1.5	7.02×10 ⁻¹²	3.52×10 ⁻¹²	6.06×10 ⁻¹³	2.63×10 ⁻¹²	1.98×10 ⁻¹²	3.20×10 ⁻¹²	2.22×10 ⁻¹²	(7.6±1.1)×10 ⁻¹²
2	9.29×10 ⁻¹²	4.67×10 ⁻¹²	8.07×10 ⁻¹³	3.50×10 ⁻¹²	2.64×10 ⁻¹²	4.25×10 ⁻¹²	2.88×10 ⁻¹²	(7.00±1)×10 ⁻¹²
2.5	1.15×10 ⁻¹¹	5.82×10 ⁻¹²	1.01×10 ⁻¹²	4.36×10 ⁻¹²	3.29×10 ⁻¹²	5.30×10 ⁻¹²	3.51×10 ⁻¹²	(8.8±0.9)×10 ⁻¹²
3	1.38×10 ⁻¹¹	6.96×10 ⁻¹²	1.21×10 ⁻¹²	5.22×10 ⁻¹²	3.95×10 ⁻¹²	6.35×10 ⁻¹²	4.12×10 ⁻¹²	(1.14±0.9)×10 ⁻¹¹
100	2.53×10-10	1.57×10 ⁻¹⁰	3.64×10 ⁻¹¹	1.25×10-10	1.06×10 ⁻¹⁰	1.54×10-10	5.99×10 ⁻¹¹	
400	5.47×10 ⁻¹⁰	3.85×10 ⁻¹⁰	1.18×10 ⁻¹⁰	3.27×10 ⁻¹⁰	2.95×10 ⁻¹⁰	3.96×10 ⁻¹⁰	1.31×10 ⁻¹⁰	
760	7.20×10 ⁻¹⁰	5.36×10 ⁻¹⁰	1.89×10 ⁻¹⁰	4.75×10 ⁻¹⁰	4.38×10 ⁻¹⁰	5.64×10 ⁻¹⁰	1.77×10 ⁻¹⁰	
1000	7.97×10 ⁻¹⁰	6.08×10 ⁻¹⁰	2.28×10-10	5.48×10 ⁻¹⁰	5.11×10 ⁻¹⁰	6.45×10 ⁻¹⁰	3.83×10 ⁻¹⁰	
104	1.36×10-9	1.23×10-9	7.56×10 ⁻¹⁰	1.29×10 ⁻⁹	1.27×10-9	1.40×10 ⁻⁹	4.82×10 ⁻¹⁰	
105	1.58×10-9	1.56×10 ⁻⁹	1.34×10 ⁻⁹	1.81×10 ⁻⁹	1.82×10-9	1.85×10-9	5.03×10 ⁻¹⁰	
106	1.62×10-9	1.63×10 ⁻⁹	1.58×10-9	1.95×10-9	1.98×10 ⁻⁹	1.96×10 ⁻⁹	5.06×10 ⁻¹⁰	
107	1.63×10 ⁻⁹	1.64×10 ⁻⁹	1.62×10 ⁻⁹	1.96×10 ⁻⁹	2.00×10-9	1.97×10 ⁻⁹	5.06×10 ⁻¹⁰	
108	1.63×10-9	1.64×10-9	1.63×10-9	1.97×10-9	2.00×10-9	1.97×10-9	5.06×10-10	
109	1.63×10-9	1.64×10-9	1.63×10-9	1.97×10-9	2.00×10-9	1.97×10-9	1.77×10-10	

Table S5 The rate constants at various methods in the pressures of 10⁻⁵-10⁹ Torr He and at 298 K

^{*a*}M05-2X/6-311++G(d,p);^bBMC-CCSD//M05-2X/6-311++G(d,p);^cUCCSD(T)/cc-PVTZ//M05-2X/6-311++G(d,p);^dM06-2X/6-311++G(d,p); ^{*b*}BMC-CCSD//M06-2X/6-311++G(d,p);^fUCCSD(T)/cc-PVTZ//M06-2X/6-311++G(d,p);^gB3LYP/6-311++G(d,p);^hexperimental data