Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting Information

A single colorimetric sensor for multiple targets: the sequential detection of Co²⁺ and cyanide and the selective detection of Cu²⁺ in aqueous solution

Hyo Jung Jang, Tae Geun Jo, Cheal Kim*

Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul 139-743, Korea. Fax: +82-2-973-9149; Tel: +82-2-970-6693; E-mail: <u>chealkim@seoultech.ac.kr</u>

Sensor	Detection limit (µM)	Binding constant	Water % in solvent	Method of detection	Reference
	Co ²⁺ 30 Cu ²⁺ 30	No data	20%	Naked eye	[1]
HOOC OH N OH N HOOC H HOOC H HOOC H H HOOC H H H H H H	Co ²⁺ 0.52 Cu ²⁺ 0.41	No data	100%	Naked eye	[2]
John Hit	Co ²⁺ 0.1 Cu ²⁺ 0.1	No data	40%	Fluorescence	[3]
	Co ²⁺ 1.7 Cu ²⁺ 2.1	$Co^{2+} 1.0x10^{10}$ $Cu^{2+} 1.0x10^{9}$	100%	Naked eye	[4]
	Co ²⁺ 0.85 Cu ²⁺ 0.98	$Co^{2+} 1.1x10^4$ $Cu^{2+} 9.9x10^3$	80%	Naked eye	[5]
S H. N H.	Co ²⁺ 0.19 Cu ²⁺ 0.13	$Co^{2+} 1.0x10^{10}$ $Cu^{2+} 7.0x10^{9}$	95%	Naked eye	this work

Table S1. Examples for the simultaneous detection of Co^{2+} and Cu^{2+} by organic chemosensors.

References

- 1 N. Kaur and S. Kumar, *Tetrahedron Lett.*, 2008, **49**, 5067–5069.
- 2 M. R. Awual, T. Yaita and Y. Okamoto, Sens. Actuators, B, 2014, 203, 71-80.
- 3 J. H. Ye, L. J. Duan and L. L. Jin, *Adv. Mater. Res.*, 2012, **554**, 2045–2048.
- 4 J. J. Lee, Y. W. Choi, G. R. You, S. Y. Lee and C. Kim, *Dalton Trans.*, 2015, 44, 13305–13314.
- 5 E. J. Song, G. J. Park, J. J. Lee, S. Lee, I. Noh, Y. Kim, S. J. Kim, C. Kim and R. G. Harrison, *Sens. Actuators, B*, 2015, **213**, 268–275.

Sensor	Detection limit (µM)	Binding constant	Interference	Water % in solvent	Method of detection	Reference
-00C HHNNHN -00C HHNNHN -00C HHNNHN -00C -00C	10	1.2 × 10 ⁵	No data	100%	Naked eye	[1]
	0.43	1.26 × 10 ⁷	No interference	25%	Naked eye	[2]
	10	No data	No data	100%	Naked eye	[3]
S H. N H.	24.11	3.0×10^{4}	No interference	95%	Naked eye	this work

Table S2. Examples for the sequential detection of Co²⁺ and CN⁻ by organic chemosensors.

References

- 1 C. Männel-Croisé and F. Zelder, *Inorg. Chem.*, 2009, **48**, 1272–1274.
- 2 H. Tavallali, G. Deilamy-Rad, A. Parhami and S.Z. Mousavi, *Photochem. Photobiol. B Biol.*, 2013, **125**, 121–130.
- 3 I. Bhowmick, D. J. Boston, R. F. Higgins, C. M. Klug, M. P. Shores and T. Gupta, *Sens. Actuators, B*, 2016, **235**, 325–329.

Fig. S1 Job plot for the binding of **1** with Co^{2+} . Absorbance at 400 nm was plotted as a function of the molar ratio of $[Co^{2+}]/([1]+[Co^{2+}])$. The total concentration of Co^{2+} ions with sensor **1** was 2.0 x 10⁻⁵ M.

Fig. S2 Li's equation plot (absorbance at 400 nm) of 1, assuming 2:1 stoichiometry for association between 1 and Co²⁺. 'Ct' means the concentration of 1, and 'a' does $[(A_x-A_{max})/(A_0-A_{max})]$.

Fig. S3 Detection limit based on change in the ratio (absorbance at 400 nm) of 1 (20 $\mu M)$ with $Co^{2+}.$

Fig. S4 UV-vis absorbance (400 nm) of **1** and $Co^{2+}-2\cdot 1$ complex at different pH (2-12) in a mixture of bis-tris buffer/DMSO (95/5, v/v), respectively.

Fig. S5 (a) UV-vis spectral changes of **1** (20 μ M) after the sequential addition of Co²⁺ and EDTA in bis-tris buffer/DMSO (95:5, v/v). (b) The color changes of **1** (20 μ M) after the sequential addition of Co²⁺ and EDTA.

Fig. S6 Absorbance (at 400 nm) of **1** as a function of Co(II) concentration. $[1] = 20 \,\mu\text{mol/L}$ and [Cu(II)] = 0.00-3.00 μ mol/L in a mixture of bis-tris buffer/DMSO (95/5, v/v, 10 mM bis-tris, pH 7.0).

Fig. S7 Job plot for the binding of **1** with Cu^{2+} . Absorbance at 400 nm was plotted as a function of the molar ratio of $[Cu^{2+}]/([1]+[Cu^{2+}])$. The total concentration of Cu^{2+} ions with receptor **1** was 2.0 x 10⁻⁵ M.

Fig. S8 Li's equation plot (absorbance at 400 nm) of 1, assuming 2:1 stoichiometry for association between 1 and Cu²⁺. 'Ct' means the concentration of 1, and 'a' does $[(A_x - A_{max})/(A_0 - A_{max})]$.

Fig. S9 Detection limit based on change in the ratio (absorbance at 400 nm) of 1 (20 $\mu M)$ with $Cu^{2+}.$

(a)

Fig. S10. (a) Absorption spectral changes of competitive selectivity of 1 (20 μ M) toward Cu²⁺ (0.7 equiv) in the presence of other metal ions (0.7 equiv) in bis-tris buffer /DMSO (95/5, v/v). (b) The color changes of competitive selectivity of 1 (20 μ M) toward Cu²⁺ (0.7 equiv) in the presence of other metal ions (0.7 equiv).

Fig. S11. UV-vis absorbance (400 nm) of **1** and Cu²⁺-2•**1** complex at different pH (2-12) in a mixture of bis-tris buffer/DMSO (95/5, v/v), respectively.

Fig. S12. (a) UV-vis spectral changes of 1 (20 μ M) after the sequential addition of Cu²⁺ and EDTA in a mixture of bis-tris buffer/DMSO (95/5, v/v). (b) The color changes of 1 (20 μ M) after the sequential addition of Cu²⁺ and EDTA.

(a)

Fig. S13 Absorbance (at 400 nm) of **1** as a function of Cu(II) concentration. $[1] = 20 \,\mu\text{mol/L}$ and [Cu(II)] = 0.00-3.00 μ mol/L in a mixture of bis-tris buffer/DMSO (95/5, v/v, 10 mM bis-tris, pH 7.0).

Fig. S14 (a) The theoretical excitation energies (TD-DFT method) and the experimental UV-vis spectrum of 1. (b) The major electronic transition energy and molecular orbital contributions for 1 (H = HOMO and L = LUMO). (c) Isosurface (0.030 electron bohr-3) of molecular orbitals participating in the major singlet excited state of 1.

Excited State 14	Wavelength	percent (%)	Character	Oscillator strength
H-1 (α) \rightarrow L (α)	435.75	18%	ICT	0.3857
H (α) \rightarrow L+1 (α)		11%	ICT	
H-3 (β) \rightarrow L (β)		19%	LMCT	
$\text{H-1}\left(\beta\right) \to \text{L+1}\left(\beta\right)$		23%	ICT	
Excited State 16	Wavelength	percent (%)	Character	Oscillator strength
H-1 (α) \rightarrow L+1 (α)	432.57	22%	ICT	0.4597
$\text{H-4}\left(\beta\right) \to \mathbb{L}\left(\beta\right)$		22%	LMCT	
$\text{H-1}\left(\beta\right) \to \text{L+2}\left(\beta\right)$		21%	ICT	
H (β) \rightarrow L+1 (β)		10%	ICT	

(c)

19

Fig. S15 (a) The theoretical excitation energies (TD-DFT method) and the experimental UV-vis spectrum of Cu²⁺-2·1 complex. (b) The major electronic transition energies and molecular orbital contributions for 1 (H = HOMO and L = LUMO). (c) Isosurface (0.030 electron bohr-3) of molecular orbitals participating in the major singlet excited state of Cu²⁺-2·1 complex.

Fig. S16 UV-vis spectra of **1** (20 μ M), Co²⁺-2·**1** (Co²⁺ = 15 μ M), and Co²⁺-2·**1** + CN⁻ (30 equiv) in bis-tris buffer/DMSO (95/5, v/v).

Fig. S17 Job plot of $Co^{2+}-2\cdot 1$ complex and CN^{-} , where the intensity at 400 nm was plotted against the mole fraction of CN^{-} . The total concentrations of CN^{-} with $Co^{2+}-2\cdot 1$ complex were 20 μ M

Fig. S18 Benesi-Hildebrand plot (at 400 nm) of $Co^{2+}-2\cdot 1$ (20 μ M), assuming 1:1 stoichiometry for association between $Co^{2+}-2\cdot 1$ and CN^{-} .

Fig. S19 Determination of the detection limit based on change in the ratio (absorbance at 400 nm) of Co²⁺-2·1 (20 μ M) with CN⁻.

Fig. S20 UV absorbance (at 400 nm) of Co²⁺-2·1 (20 μ M) and Co²⁺-2·1-CN⁻ at different pH (2-12) in a mixture of bis-tris buffer /DMSO (95/5, v/v), respectively.