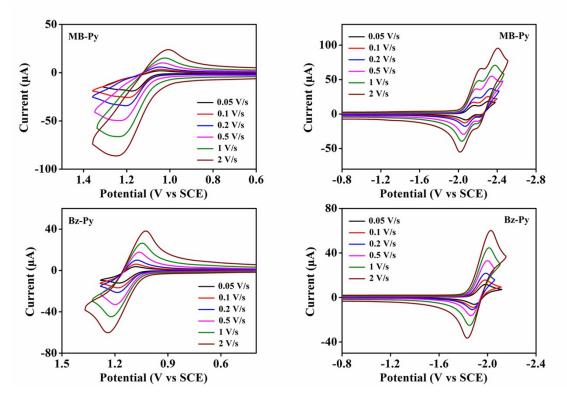
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

> Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Twisted configuration pyrene derivative: exhibiting pure blue monomer photoluminescence and electrogenerated chemiluminescence emissions in non-aqueous media


Ying Zhao,^a Dong xue,^{†a} Honglan Qi,^a and Chengxiao Zhang^{†a}

^aKey Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China

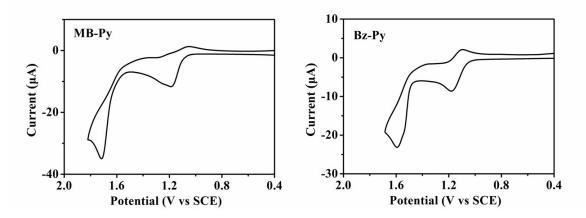
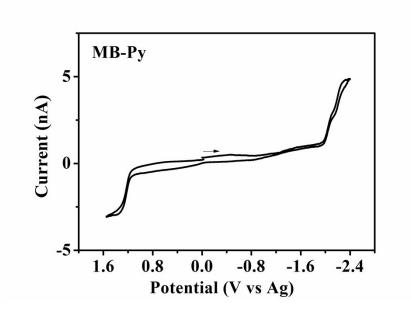
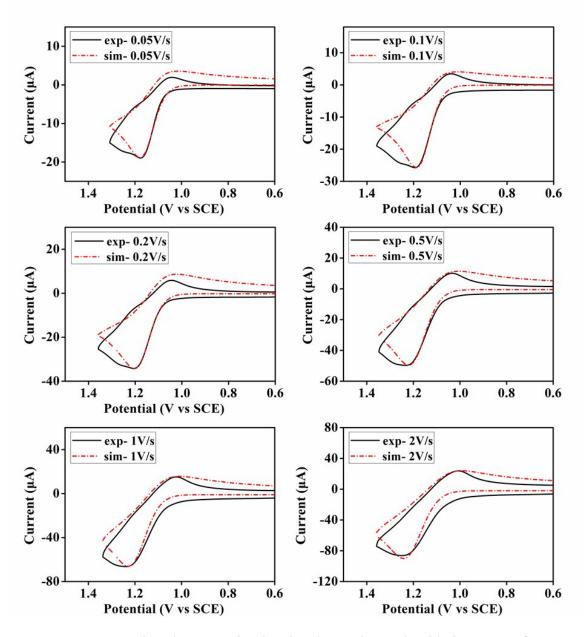
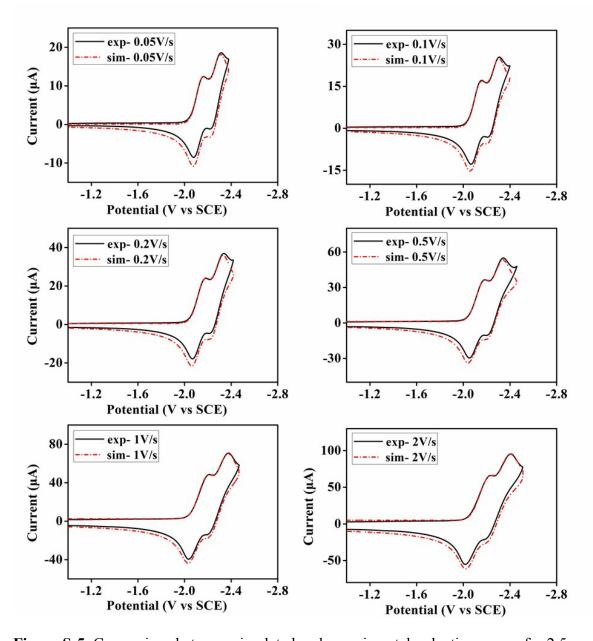
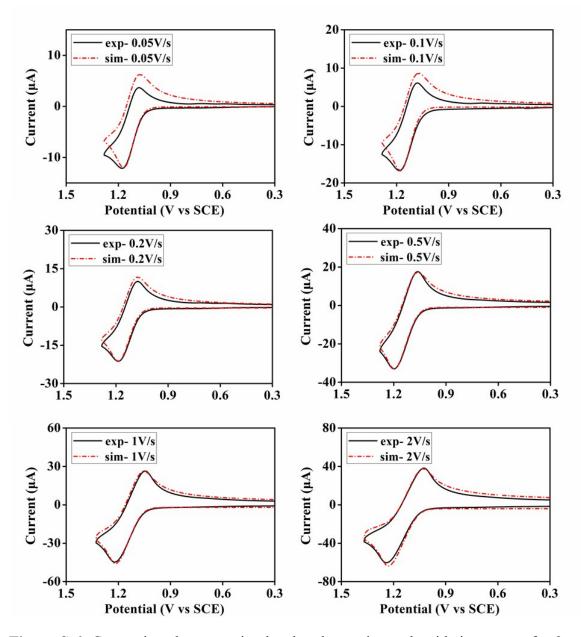

†Corresponding authors: cxzhang@snnu.edu.cn, xuedong_welcome@snnu.edu.c

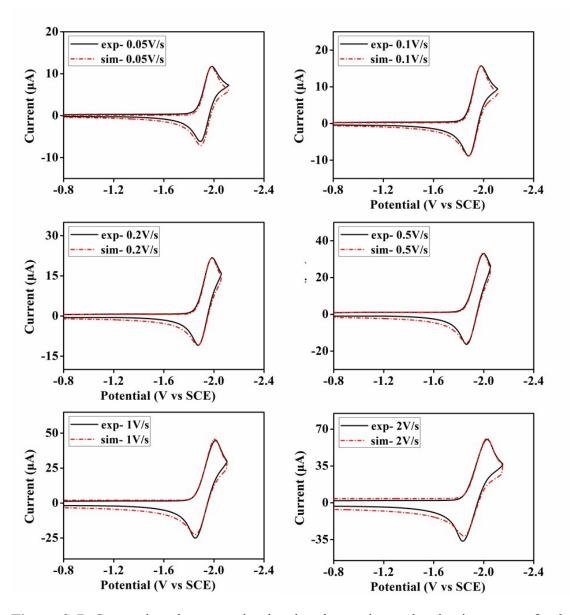
Table of Contents


Figure S-1	Cyclic voltammograms of MB-Py and Bz-Py with different scan rates	S2
Figure S-2	Cyclic voltammograms of MB-Py and Bz-Py	S2
Figure S-3	Cyclic voltammogram of MB-Py at a platinum UME	S3
Figure S-4	Comparison between simulated and experimental oxidation waves for MB-Py	S4
Figure S-5	Comparison between simulated and experimental reduction waves for MB-Py	S 5
Figure S-6	Comparison between simulated and experimental oxidation waves for Bz-Py	S6
Figure S-7	Comparison between simulated and experimental reduction waves for Bz-Py	S7
Figure S-8	Absorbance and PL spectra of MB-Py, Bz-Py and Py at different concentrations	S8
Figure S-9	Absorbance and PL spectra of MB-Py, Bz-Py and Py in different solvents	S9
Figure S-10	ECL-CV simultaneous measurements and normalized ECL spectra of BZ-Py	S10


Figure S-1. Cyclic voltammograms of MB-Py (2.5 mM) and Bz-Py (2 mM) in MeCN:Bz (v:v=1:1) containing 0.1 M TBAPF₆ at Pt electrode(0.027 cm²) with different scan rates.


Figure S-2. Cyclic voltammograms of MB-Py (1.0 mM) and Bz-Py (1.0 mM) in MeCN:Bz (v:v=1:1) containing 0.1 M TBAPF₆ at Pt electrode (0.027 cm²) with a scan rate of 0.1 V/s.


Figure S-3. Cyclic voltammogram of MB-Py (2.5 mM) at a platinum UME ($r = 11 \mu m$) in MeCN:Bz (*v*:*v*=1:1) containing 0.1 M TBAPF₆ with a scan rate of 10 mV/s.


Figure S-4. Comparison between simulated and experimental oxidation waves for 2.5 mM MB-Py at different scan rates. The model for these oxidation simulations: EC, with n = 1, with a heterogeneous rate constant, $\alpha = 0.5$, $k^0 = 1 \times 10^4$ cm/s and a homogeneous forward rate constant, $k_{eq} = 0.8$, $k_f = 20$ s⁻¹. Simulated data: $E^0 = 1.11$ V vs. SCE; Diffusion coefficient: 1.36×10^{-5} cm²/s, uncompensated resistance 853 Ω , capacitance 3×10^{-6} F. Experimental conditions: solvent: MeCN:Bz (*v*:*v*=1:1), supporting electrolyte: 0.1 M TBAPF₆, Pt electrode area 0.027 cm².

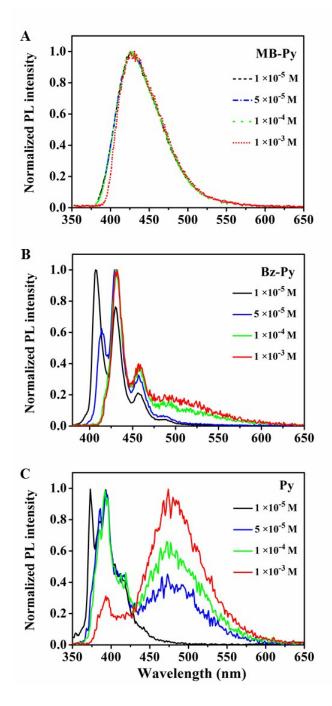

Figure S-5. Comparison between simulated and experimental reduction waves for 2.5 mM MB-Py at different scan rates. The model for these reduction simulations: ECE, with n = 2, with a heterogeneous rate constant, $\alpha = 0.5$, $k_1^0 = 0.012$ cm/s, $k_2^0 = 0.015$ cm/s. Simulated data: $E^{o}_{1/2,1} = -2.12$ V vs. SCE, $E^{o}_{1/2,2} = -2.27$ V vs. SCE; Diffusion coefficient: 1.36×10^{-5} cm²/s, uncompensated resistance 603 Ω , capacitance 1×10^{-6} F. Experimental conditions: solvent: MeCN:Bz (*v*:*v*=1:1), supporting electrolyte: 0.1 M TBAPF₆, Pt electrode area 0.027 cm².

Figure S-6. Comparison between simulated and experimental oxidation waves for 2 mM BZ-Py at different scan rates. The model for these oxidation simulations: EC, with n = 1, with a heterogeneous rate constant, $\alpha = 0.5$, $k^0 = 1 \times 10^4$ cm/s and a homogeneous forward rate rate constant, $k_{eq} = 0.8$, $k_f = 18$ s⁻¹. Simulated data: $E^o = 1.13$ V vs. SCE; Diffusion coefficient: 9.80×10^{-6} cm²/s, uncompensated resistance 927 Ω , capacitance 3×10^{-6} F. Experimental conditions: solvent: MeCN:Bz (*v*:*v*=1:1), supporting electrolyte: 0.1 M TBAPF₆, Pt electrode area 0.027 cm².

Figure S-7. Comparison between simulated and experimental reduction waves for 2 mM Bz-Py at different scan rates. The model for these reduction simulations: EC, with n = 1, with a heterogeneous rate constant, $\alpha = 0.5$, $k^0 = 1 \times 10^4$ cm/s and a homogeneous forward rate rate constant, $k_{eq} = 0.8$, $k_f = 18$ s⁻¹. Simulated data: $E^0 = -1.94$ V vs. SCE; Diffusion coefficient: 9.80×10^{-6} cm²/s, uncompensated resistance 1011 Ω , capacitance 2×10^{-6} F. Experimental conditions: solvent: MeCN:Bz (*v*:*v*=1:1), supporting electrolyte: 0.1 M TBAPF₆, Pt electrode area 0.027 cm².

Figure S-8. Absorbance and PL spectra of (A) MB-Py, (B) Bz-Py and (C) Py at different concentrations in MeCN:Bz (v:v=1:1) (excitation at $\lambda_{abs, max}$).

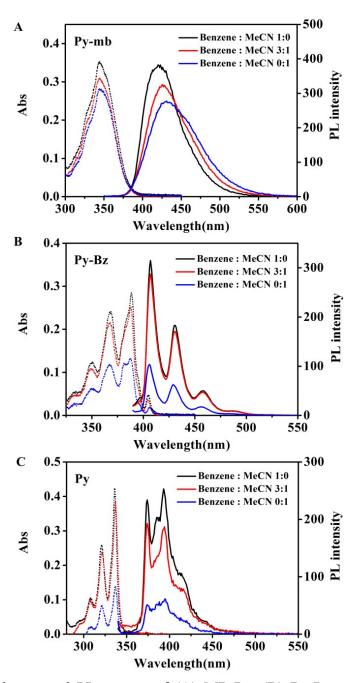
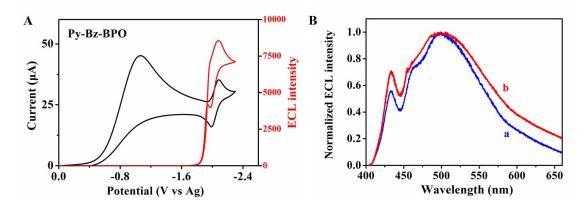



Figure S-9. Absorbance and PL spectra of (A) MB-Py, (B) Bz-Py and (C) Py in different ratio mixed solvents. (excitation at $\lambda_{abs, max}$).

Figure S-10. (A) ECL (red) and CV (black) simultaneous measurements for 1 mM Bz-Py in the presence of 10 mM BPO with a scan rate of 0.1 V/s; (b) ECL spectra for 1 mM Bz-Py in the absence (blue, a) and presence (red, b) of 10 mM BPO; spectra were generated by pulsing the potential from 0 to -2.3 V versus Ag in MeCN:Bz (v:v=1:1) containing 0.1 M TBAPF₆. Pulse width is 1 s, negative high-voltage: 600 V, Pt electrode area: 0.027 cm².