Supporting information

Mn²⁺ doped CdAl₂O₄ Phosphors with New Structure and Special Fluorescence Properties: Experimental and Theoretical Analysis

Weiguang Ran,[†] Lili Wang,[†] Qingzhi Liu,[†] Guangzeng Liu,^{‡,§} Dan Qu,[†] Xiaohua Pan,[†] Jinsheng Shi^{*†}

[†]Qingdao Agricultural University, Qingdao 266109, People's Republic of China.

*State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China.

Scollege of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, 250013, PR China.

Details of the Crystal structure refinements

In our study, the Zn₂SiO₄ (ICSD-67235) phase can be defined as the original structural model for the refinement of the CdAl₂O₄ and CdAl₂O₄:Mn²⁺ sample due to their similar trigonal structure with the space group R-3 (148). The CdAl₂O₄ structure model was coming from the Zn₂SiO₄ structural through substituting eighteen Cd²⁺ atoms for Si⁴⁺, and substituting thirty-six Al³⁺ atoms for Zn²⁺. The single-phase of CdAl₂O₄ and CdAl₂O₄:Mn²⁺ powders were successfully synthesized in this study, crystallized with the space group of R-3 (148). All atom positions, fraction factors, and temperature factors were refined to convergence and satisfied the reflection conditions well. For pure CdAl₂O₄ phosphor, the cell parameter is a = b = 14.2210 Å, c= 9.5733 Å, V = 1676.69 Å³. The final refinement converged with weighted profiles of R_p = 6.03%, R_{wp} = 8.41% and χ^2 = 2.624, which illustrates there is no detectable impurity phase observed in this obtained sample.

Details of the calculation

The CASTEP program was employed to perform geometry optimization using the generalized gradient approximation (GGA) by the Perdew-Burke-Ernzerhof (PBE)^{1, 2} formulation. In this calculation, the structure models of CdAl₂O₄ and CdAl₂O₄:Mn²⁺ phosphors were based on the pure CdAl₂O₄ host which was optimized by GSAS program. One of the eighteen Cd atomics was substituted by Mn in CdAl₂O₄ unit cell. During the geometry optimization, the atomic positions were optimized. The cutoff energy was 480 eV, and Brillouin zone integration was represented using the K point sampling scheme of a 5×5×5 Monkhorst–Pack grid. The convergence tolerance for geometry optimization was 5.0 × 10⁻⁶ eV per atom, the maximal ionic Hellmann–Feynman force was 1.0×10^{-2} eV Å⁻¹, the stress tensor was 2.0×10^{-2} GPa and the maximal displacement being within 5.0×10^{-4} Å.

Element Symbol	Mult. Wyck.	x/a	y/b	z/c			
Cd1	18f	0.20085	0.17768	0.24733			
All	18f	0.21058	0.19950	0.58281			
Al2	18f	0.21741	0.19911	0.91728			
01	18f	0.34060	0.34362	0.25124			
O2	18f	0.22125	0.11287	0.04551			
03	18f	0.21775	0.11774	0.45330			
O4	18f	0.18963	0.13848	0.74960			
^a a=b=14.2150 , c=9.5700 , α = β =90°, γ =120°, V=1674.70 Å ³ Space group R-3							

Table S1. Optimized structural parameters of CdAl₂O₄ obtained from the Geometry Optimization.

Element Symbol	Mult. Wyck.	x/a	y/b	z/c	S.O.F.	U(Å ²)			
Cd1	18f	0.20600	0.18360	0.24629	0.972	0.0089			
Mn	18f	0.20600	0.18360	0.24629	0.028	0.0900			
All	18f	0.20835	0.19826	0.5832	1.000	0.0040			
Al2	18f	0.2179	0.19712	0.9165	1.000	0.0096			
01	18f	0.3427	0.3457	0.2575	1.000	0.0065			
02	18f	0.2201	0.1110	0.0474	1.000	0.0008			
O3	18f	0.2147	0.1200	0.4480	1.000	0.0219			
O4	18f	0.1934	0.1377	0.7463	1.000	0.0163			
^a a=b=14.219 , c=9.5718 , α = β =90°, γ =120°, V=1675.59 Å ³ , Space group R-3, R _{wp} = 6.98%,									
$P = -5.420()^2 = 1.800$									

Table S2. Refined structural parameters of $CdAl_2O_4:0.03Mn^{2+}$ obtained from the Rietveld refinement.

 $R_{exp}=5.42\%$, $\chi^2=1.800$.

Figure S1

Fig. S1 Calculated phonon dispersion and density of phonon states curves.

Figure S2

Fig. S2 XPS Spectrum of $CdAl_2O_4:0.01Mn^{2+}$ (**a**) survey scan and (**b**) high-resolution scan of the Mn2p region.

Figure S3

Fig. S3 Excitation and emission spectra of as prepared $Zn_2SiO_4:0.01Mn^{2+}$ phosphor.

Figure S4

Fig.S4 The temperature-dependent emission intensity of the optimized $CdAl_2O_4$:0.015Mn²⁺ phosphor.

Figure S5

Fig.S5 Decay curves of Mn^{2+} -doped CdAl₂O₄ phosphor excited at 230 nm and monitored at 495 nm.

Figure S6

Fig. S6 CIE chromaticity diagram of $CdAl_2O_4$, $CdAl_2O_4$:0.0005Mn²⁺ and $CdAl_2O_4$:0.015Mn²⁺ phosphors excited at about 230 nm.

- 1. M. D. Segall, J. D. L. Philip, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne, *First-principles simulation: ideas, illustrations and the CASTEP code, J Phys: Condens Mat.* 2002, **14**, 2717.
- 2. J. P. Perdew, K. Burke and M. Ernzerhof, *Generalized Gradient Approximation Made Simple, Phys Rev Lett.* 1996, **77**, 3865-3868.