Acidic Hierarchical Zeolite ZSM-5 Supported Ru Catalyst with High Activity and Selectivity in Seleno-functionalization of Alkenes

Hai Dong, Lei Zhang, Zhongxue Fang, Wenqian Fu*, Ting Tang, Yu Feng and Tiandi Tang*

Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China.

* To whom correspondence should be addressed.

E-mail: fuwenqian@cczu.edu.cn; tangtiandi@cczu.edu.cn and tangtiandi@wzu.edu.cn Tel.: +86-519-86330253

1. Figures

Fig. S1 SEM image of the microporous zeolite ZSM-5

Fig. S2 Py-IR spectra of the γ -Al₂O₃ and Ru/ γ -Al₂O₃ samples.

Fig. S3 (a) XRD patterns of ZSM-5-H and Ru/HZSM-5-H samples, and (b) the peak fitting of XRD patterns of Ru/HZSM-5-H between diffraction peaks at 2θ =33-37°.

Fig. S4 XRD patterns of ZSM-5 and Ru/HZSM-5 samples, and (b) the peak fitting of XRD patterns of Ru/HZSM-5-H between diffraction peaks at 2θ =33-37°

Fig. S5 XRD patterns of ETS-10 and Ru/ETS-10 samples.

Fig. S6. XRD patterns of the HZSM-5-H supported Ru catalysts.

Fig. S7 The size distributions of the RuO₂ particles on the Ru/HZSM-5-H and Ru/HZSM-5 catalysts.

Discussion: The size distributions of the RuO₂ in the catalyst were also obtained by statistical analyses from at least 20 images of 150-200 RuO₂ particles from different regions of each catalyst. The average RuO₂ particle size ($D_{aver.}$) was also calculated according to following equation:

$$D_{\text{aver.}} = \frac{\sum_{i=1}^{n} d_i}{n_i}$$

where n_i is the number of the RuO₂ particles and d_i is the size of each RuO₂ particle. **Fig. S5** shows the size distributions of the RuO₂ particle size distribution on the Ru/HZSM-5 and Ru/HZSM-5-H sample. The particle size of RuO₂ on mainly ranges from 1 to 40 nm, while that on Ru/HZSM-5-H samples are mainly 1-30 nm. Based on the data in **Fig. S5**, the average RuO₂ particle size ($D_{aver.}$) was calculated, the $D_{aver.}$ is 17.9 nm on the Ru/HZSM-5-H, while that is 23.3 nm on Ru/HZSM-5 catalyst.

Fig. S8. H_2 -TPR profile of the calcined Ru/HZSM-5-H catalyst.

Discussion: H_2 -TPR profile shows one reduction peak at 130 °C, which should be attributed to the reduction of Ru species.

Fig. S9. Possible reaction mechanism on Ru/HZSM-5-H catalyst.

Discussion: The seleno-functionalization of styrene with hydroxyl, alkoxy and carbethoxy nucleophilic reagents on Ru/HZSM-5-H is illustrated in **Fig. S8**. Firstly, the C=C bond in styrene (**1a**) could be activated through the C=C bond interacting with H⁺ site on Ru/HZSM-5-H catalyst to form an intermediate **B**. Simultaneously, the Ru⁴⁺ species facilitate the transformation from diaryl diselenides (**2a**) to electrophilic selenium species under the H₂O₂ oxidizing agent, and electrophilic selenium species attack the activated C=C bond in styrene to form intermediate **C**. Finally, the nucleophilic reagents react with intermediate **C** to generate the final target product **3a**.

2. Tables

Sample	$S_{BET} (m^2/g)^a$	$S_{ext} (m^2/g)^b$	$V_{mic} (cm^3/g)^c$	$V_{meso} (cm^3/g)^d$	Si/Al(Ti)
ZSM-5-H	460	208	0.11	0.47	36
ZSM-5	392	45	0.12	0.03	30
HZSM-5-H	408	167	0.08	0.45	35
HZSM-5	376	43	0.11	0.03	31
ETS-10	316	18	0.09	0.03	7
γ-Al ₂ O ₃	354	311	-	0.88	-
Ru/HZSM-5-H	392	162	0.08	0.40	-
Ru/HZSM-5	343	37	0.11	0.03	-
Ru/ETS-10	305	22	0.11	0.03	-
Ru/γ - Al_2O_3	359	332	0.02	0.83	-

 Table S1. Texture parameters of all catalyst samples.

^aBET surface area. ^bExternal surface area, including mesoporous surface area. ^cMicroporous

volume. ^{*d*}Mesoporous volume.

Catalyst	Weak acidic	Medium acidic	Strong acidic	Total acidic sites	
	sites (µmol/g) ^a	sites $(\mu mol/g)^a$ sites $(\mu mol/g)^b$		$(\mu mol/g)^d$	
γ-Al ₂ O ₃	317	163	-	480	
HZSM-5-H	227	153	120	500	
HZSM-5	287	164	129	580	
Ru/γ - Al_2O_3	-	-	-	340	
Ru/HZSM-5-H	-	-	-	420	
Ru/HZSM-5	-	-	-	480	

Table S2 Total acidities and the acidic sites distributions of the supports and catalysts

^{*a*} Weak acidic sites estimated from the relative area of the deconvoluted peak.

^b Medium acidic sites estimated from the relative area of the deconvoluted peak.

^c Strong acidic sites estimated from the relative area of the deconvoluted peak.

^{*d*} Total acidic site determined by titration technique.

	Se-Se-	$\begin{array}{c} \text{Catalyst, H}_2\text{O}_2 \\ \hline \\ \hline \\ \text{CH}_3\text{CN/H}_2\text{O, 60 °C} \end{array} $	OH Se	+ CHC	
	1a 2a		3a	3a'	3a''
Entry	Catalvat	Conversion $(0/)$	Selectivity (%)		
	Catalyst	Conversion (78)	3a	3a'	3a″
1	Ru/HZSM-5-H-1	70	85	8	7
2	Ru/HZSM-5-H-1.5	73	86	8	6
3	Ru/HZSM-5-H-2	90	80	5	15
4	Ru/HZSM-5-H-2.5	92	90	6	11
5	Ru/HZSM-5-H-3	94	94	4	2

Table S3. Hydroxyselenation of styrene with diaryl diselenide over a series of catalysts.

^{*a*}Reaction conditions: catalysts (25 mg), styrene **1a** (1.0 mmol), diaryl diselenides **2a** (0.6 mmol), H_2O_2 (1.5 mmol, 30% aqueous solution), acetonitrile (1 mL) and H_2O (1 mL) were placed in a sealed tube (10 mL). The reaction was proceeded at 60 °C for 7 h.

Table S4. Alkoxysulfennylation of styrenes with diaryl disulfides in the presence of methanol over Ru/HZSM-5-H catalyst.^{*a*}

R II	+ SSS	+ CH ₃ OH $\frac{\text{Ru/HZSM-5-H, H}_2\text{O}_2}{60 ^{\circ}\text{C}, 10 \text{ h}} R_{\frac{1}{12}}$	s
Entry	Alkenes	Products	Conv. (%)
1		5a	75 (83)
2		sto 5b	82 (88)
3	CI		88 (84)

^{*a*}Reaction condition: 25 mg solid catalyst, styrene (1.0 mmol), diaryl disulfides (0.6 mmol), H_2O_2 (1.5 mmol), methanol (2.0 mL), 60 °C for 10 h. The data out of parenthesis is conversion, and in parenthesis is selectivity.

+	Ru/HZSM-5-H, H ₂ O ₂	OH Se	
1a 2a		3a	
Entry	Recycle	Conversion (%)	Selectivity (%)
1	Run 1	94	95
2	Run 2	94	94
3	Run 3	92	93
4	Run 4	90	92
5	Run 5	89	91
6	Run 6	90	90
7	Run 7	90	91

 Table S5. The reusability of the catalyst. a

^{*a*} Reaction condition: 25 mg solid catalyst, styrene (1.0 mmol), diaryl diselenides (0.6 mmol), H_2O_2 (1.5 mmol), H_2O (1.0 mL), CH_3CN (1.0 mL), reaction time of 7 h. The yield was analyzed by LC. The spend catalyst was carefully collected, washed with acetonitrile 10 times, and dried at 120 °C for 10 h, and followed by calcination at 450 °C in air for next recycle.

	+	Se-Se-Ru/HZSM CH ₃ CN/I	1-5-Н, Н ₂ Н ₂ О, 60 °	$C \xrightarrow{O_2} C$	OH Se	+	CHO +	
	1a	2a			3a	ŝ	3a' 3a''	
Entw	Catalyst	C_{appy} $(0/)^{h}$	Selectivity (%) ^c			Error bars		
Entry	Catalyst	$CONV. (\%)^{\circ}$	3 a	3a′	3a″	Conv.	Selectivity	
1	Ru/HZSM-5-H	94	95	2	3			
2	Ru/HZSM-5-H	93	93	4	3	0.41	0.48	
3	Ru/HZSM-5-H	95	93	3	3			
4	Ru/HZSM-5-H	94	94	4	2			

Table S6. Hydroxyselenation of styrene with diaryl diselenide over Ru/HZSM-5-H catalyst.^a

^aReaction condition: 25 mg solid catalyst, styrene 1a (1.0 mmol), diaryl diselenides 2a (0.6 mmol), H₂O₂ (1.5 mmol), H₂O (1.0 mL), CH₃CN (1.0 mL), 7 h.

3. Analytical data

(3a) 1-phenyl-2-(phenylselanyl)ethanol

¹**H NMR** (400 MHz, CDCl₃) δ 7.45-7.38 (m, 2H), 7.24-7.10 (m, 8H), 4.63 (dt, *J* = 3.2, 6.4 Hz, 1H), 3.18 (dd, *J* = 4.0, 12.8 Hz, 1H), 3.04 (dd, *J* = 9.6, 12.8 Hz, 1H), 2.86 (d, *J* = 2.4 Hz, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 142.3, 132.9, 132.8, 129.1, 128.4, 127.8, 127.2, 125.7, 72.1, 38.2.

(3b) 1-(2-methoxyphenyl)-2-(phenylselanyl)ethanol

¹**H NMR** (400 MHz, CDCl₃) δ 7.45-7.38 (m, 2H), 7.33 (d, *J* = 7.6 Hz, 1H), 7.18-7.08 (m, 4H), 6.87

(t, *J* = 7.6 Hz, 1H), 6.72 (d, *J* = 8.0 Hz, 1H), 4.98-4.90 (m, 1H), 3.66 (s, 3H), 3.35 (dd, *J* = 4.0, 12.8 Hz, 1H), 3.07-2.95 (m, 2H);

¹³C NMR (100 MHz, CDCl₃) δ 155.9, 132.1, 130.3, 129.8, 128.8,128.5, 126.6, 126.5, 120.6, 110.1, 68.7, 55.0, 35.8.

(3c) 1-(4-methoxyphenyl)-2-(phenylselanyl)ethanol

¹H NMR (300 MHz, CDCl₃) δ 7.58-7.49 (m, 2H), 7.31-7.22 (m, 5H), 6.90-6.82 (m, 2H), 4.73 (dt, J = 3.3, 6.6 Hz, 1H), 3.79 (s, 3H), 3.30 (dd, J = 3.9, 12.9 Hz, 1H), 3.17 (dd, J = 9.3, 12.6 Hz, 1H);
¹³C NMR (100 MHz, CDCl₃) δ 159.2, 134.5, 133.0, 129.2, 128.1, 127.3, 127.0, 113.8, 71.8, 55.2, 38.3.

(3d) 2-(phenylselanyl)-1-(o-tolyl)ethanol

¹**H NMR** (400 MHz, CDCl₃) δ 7.60-7.54 (m, 2H), 7.52 (d, *J*=7.6 Hz, 1H), 7.31-7.22 (m, 3H), 7.21 (t, *J* = 7.6 Hz, 1H), 7.16 (d, *J* = 7.6 Hz, 1H), 7.09 (d, *J* = 7.6 Hz, 1H), 4.92 (dt, *J* = 2.4, 4.8 Hz, 1H), 3.25 (dd, *J* = 2.8, 12.8 Hz, 1H), 3.04 (dd, J= 10.0, 12.8 Hz, 1H), 2.80 (d, *J* = 2.4 Hz, 1H), 2.11 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 140.3, 134.3, 133.4, 130.3, 129.1, 128.8, 127.57, 127.52, 126.3, 125.0, 68.6, 37.4, 18.7.

(3e) 1-(4-(tert-butyl)phenyl)-2-(phenylselanyl)ethanol

¹**H NMR** (400 MHz, CDCl₃) δ 7.55-7.48 (m, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.29-7.21 (m, 5H), 4.75

(dt, *J* = 3.2, 6.4 Hz, 1H), 3.31 (dd, *J* = 3.6, 12.8 Hz, 1H), 3.18 (dd, *J* = 9.6, 12.8 Hz, 1H), 2.77 (d, *J* = 2.8 Hz, 1H), 1.30 (s, 9H);

¹³C NMR (100 MHz, CDCl₃) δ 150.8, 139.4, 132.9, 129.2, 129.1, 127.2, 125.5, 125.4, 72.0, 38.2, 34.5, 31.2.

(3f) 4-(1-hydroxy-2-(phenylselanyl)ethyl)phenyl acetate

¹**H NMR** (400 MHz, CDCl₃) δ 7.48-7.40 (m, 2H), 7.26 (d, *J* = 8.4 Hz, 2H), 7.21-7.15 (m, 3H), 6.97 (d, *J* = 8.8 Hz, 2H), 4.65 (d, *J* = 7.2 Hz, 1H), 3.20 (dd, *J* = 3.6, 12.8 Hz, 1H), 3.04 (dd, J = 9.2, 12.8 Hz, 1H), 2.86 (s, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 169.4, 150.0, 140.0, 133.0, 129.2, 128.9, 127.3, 126.8, 121.5, 71.6, 38.2, 21.0.

(3g) 1-(2-bromophenyl)-2-(phenylselanyl)ethanol

¹**H NMR** (400 MHz, CDCl₃) δ 7.55-7.46 (m, 3H), 7.38 (dd, *J* = 1.2, 8.0 Hz, 1H), 7.35-7.13 (m, 4H), 7.04-7.98 (m, 1H), 4.97 (dt, *J* = 2.8, 5.6 Hz, 1H), 3.48-3.49 (m, 1H), 2.96 (d, *J* = 3.2 Hz, 1H), 2.84 (dd, *J* = 5.6, 8.8 Hz, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 1412, 133.4, 133.3, 132.5, 129.0, 128.5, 127.7, 127.4, 127.2, 121,5, 70.7, 36.6.

(3h) 1-(3-chlorophenyl)-2-(phenylselanyl)ethanol

¹**H NMR** (400 MHz, CDCl₃) δ 7.49-7.41 (m, 2H), 7.27-7.08 (m, 7H), 4.62 (dt, *J* = 3.2, 6.4 Hz, 1H),

3.20 (dd, *J* = 3.6, 12.8 Hz, 1H), 3.04-2.92 (m, 1H), 2.85 (d, *J* = 2.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 144.4, 134.3, 133.2, 129.7, 129.3, 128.6, 127.9, 127.5, 125.9, 123.9, 71.4, 38.3.

(3i) 1-(4-fluorophenyl)-2-(phenylselanyl)ethanol

¹**H NMR** (400 MHz, CDCl₃) δ 7.47-7.39 (m, 2H), 7.23-7.14 (m, 5H), 6.92 (t, *J* = 8.4 Hz, 2H), 4.66-4.55 (m,1H), 3.17 (dd, *J* = 4.0, 12.8 Hz, 1H), 3.02 (dd, *J* = 9.6, 12.8 Hz, 1H), 2.87 (d, *J* = 2.4 Hz, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 163.4 (d, *J* = 244.4 Hz), 138.1 (d, *J* = 3.0 Hz), 133.0, 129.2, 128.8, 127.48, 127.42 (d, *J* = 2.7 Hz), 115.3 (d, *J* = 21.2 Hz), 71.4, 38.3.

(3j) 1-(naphthalen-2-yl)-2-(phenylselanyl)ethanol

¹**H NMR** (300 MHz, CDCl₃) δ 7.85-7.76 (m, 4H), 7.60-7.52 (m, 2H), 7.51-7.40 (m, 3H), 7.31-7.23 (m, 3H), 4.93 (dt, *J* = 3.3, 6.3 Hz, 1H), 3.41 (dd, *J* = 3.6, 12.9 Hz, 1H), 3.24 (dd, *J* = 9.6, 12.9 Hz, 1H), 2.95 (d, *J* = 3.6 Hz, 1H);

¹³C NMR (125 MHz, CDCl₃) δ 139.7, 133.2, 133.1, 133.0, 129.2, 129.0, 128.3, 127.9, 127.6, 127.4, 126.2, 125.9, 124.6, 123.7, 72.2, 38.4.

(3k) 1-([1,1'-biphenyl]-4-yl)-2-(phenylselanyl)ethanol

¹**H NMR** (400 MHz, CDCl₃) δ 7.60-7.49i (m, 6H), 7.46-7.30 (m, 5H), 7.29-7.21 (m, 3H), 4.83-4.73 (m, 1H), 3.34 (dd, *J* = 3.6, 12.8 Hz, 1H), 3.19 (dd, *J* = 9.6, 12.8 Hz, 1H), 2.88 (d, *J* = 2.4 Hz, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 141.4, 140.7, 140.6, 133.1, 129.2, 129.0, 128.7, 127.3, 127.29, 127.23, 127.0, 126.2, 71.9, 38.3.

(3l) 1,1-diphenyl-2-(phenylselanyl)ethanol

¹**H NMR** (400 MHz, CDCl₃) δ 7.53-7.46 (m, 2H), 7.44 (d, *J* = 7.2 Hz, 4H), 7.31 (t, J = 5.4 Hz, 4H), 7.25-7.17 (m, 5H), 3.86 (s, 2H), 3.57 (s, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 145.3, 133.0, 130.7, 129.1, 128.2, 127.3, 127.2, 125.9, 75.5, 44.6.

(3m) 2-phenyl-1-(phenylselanyl)propan-2-ol

¹**H NMR** (400 MHz, CDCl₃) δ 7.38-7.30 (m, 4H), 7.24-7.16 (m, 2H), 7.16-7.06 (m, 4H), 3.50 (d, *J* = 12.4 Hz, 1H), 3.24 (d, *J* = 12.4 Hz, 1H), 2.84 (s, 1H), 1.52 (s, 3H);

¹³**C NMR** (100 MHz, CDCl₃) δ 146.3, 132.7, 130.4, 129.0, 128.1, 126.98, 126.96, 124.6, 73.5, 45.0, 29.7.

OH Se

(3n) 2-(phenylselanyl)cyclohexanol

¹**H NMR** (400 MHz, CDCl₃) δ 7.62-7.56 (m, 2H), 7.36-7.24 (m, 3H), 3.35 (td, *J* = 4.0, 10.0 Hz, 1H), 2.96-2.83 (m, 2H), 2.24-2.07 (m, 2H), 1.77-1.56 (m, 2H), 1.48-1.13 (m, 5H);

¹³C NMR (100 MHz, CDCl₃) δ 136.1, 128.9, 128.1, 126.5, 72.1, 53.5, 33.8, 33.3, 26.8, 24.4.

Se-

(30) 1-((phenylselanyl)methyl)cyclopentanol

¹**H** NMR (400 MHz, CDCl₃) δ 7.50-7.44 (m, 2H), 7.19-7.10 (m, 3H), 3.17 (t, *J* = 5.6 Hz, 2H), 2.26 (s, 1H), 1.81-1.59 (m, 4H), 1.58-1.43 (m, 4H);

¹³C NMR (100 MHz, CDCl₃) δ 132.5, 130.7, 129.0, 126.8, 81.5, 42.0, 39.6, 23.9.

(3p) 6-((phenylselanyl)methyl)tetrahydro-2H-pyran-2-one

¹H NMR (400 MHz, CDCl₃) δ 7.47-7.39 (m, 2H), 7.23-7.15 (m, 3H), 4.23-4.29 (m, 1H), 3.19 (dd, J = 4.8, 12.8 Hz, 1H), 2.96 (dd, J = 7.6, 12.8 Hz, 1H), 2.55-2.42 (m, 1H), 2.41-2.26 (m, 1H), 2.11-2.01 (m, 1H), 1.88-1.64 (m, 2H), 1.56-1.41 (m, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 170.9, 132.6, 129.2, 129.1, 127.2, 79.6, 32.0, 29.2, 27.1, 18.2.

(4a) (2-methoxy-2-phenylethyl)(phenyl)selane

¹H NMR (400 MHz, CDCl₃) δ 7.52-7.43 (m, 2H), 7.40-7.27 (m, 5H), 7.25-7.21 (m, 3H), 4.36 (dd, J = 4.8, 8.4 Hz, 1H, 3.34 (dd, J = 8.4, 12.0 Hz, 1H), 3.24 (s, 3H), 3.12 (dd, J = 5.2, 12.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 140.8, 132.5, 130.6, 128.9, 128.5, 128.0, 126.7, 126.6, 83.1, 57.0, 35.3.

(4b) (2-ethoxy-2-phenylethyl)(phenyl)selane

¹**H NMR** (400 MHz, CDCl₃) δ 7.53-7.43 (m, 2H), 7.38-7.27 (m, 5H), 7.24-7.17 (m, 2H), 4.48 (dd, J = 5.2, 8.4 Hz, 1H), 3.47-3.29 (m, 3H), 3.11 (dd, J = 5.2, 12.0 Hz, 1H), 1.19 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 141.6, 132.4, 130.8, 128.9, 128.4, 127.9, 126.6, 126.5, 81.3, 64.6,

(4c) (2-isopropoxy-2-phenylethyl)(phenyl)selane

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 (d, *J* = 7.6 Hz, 2H), 7.37-7.27 (m, 5H), 7.25-7.17 (m, 3H), 4.59 (dd, *J* = 4.8, 8.4 Hz, 1H), 3.55-3.45 (m, 1H), 3.32 (dd, *J* = 8.8, 12.0 Hz, 1H), 3.09 (dd, *J* = 4.8, 12.0 Hz, 1H), 1.17 (d, *J* = 6.0, 3H), 1.08 (d, *J* = 6.0 Hz, 3H);

¹³C NMR (75 MHz, CDCl₃) δ 142.4, 132.2, 131.0, 128.9, 128.4, 127.7, 126.58, 126.52, 78.6, 69.7, 35.9, 23.2, 21.2.

(4d) (2-(benzyloxy)-2-phenylethyl)(phenyl)selane

¹**H NMR** (400 MHz, CDCl₃) δ 7.48-7.38 (m, 2H), 7.38-7.26 (m, 10H), 7.25-7.14 (m, 3H), 4.63-4.52 (m, 1H), 4.50 (d, *J* = 11.6, 1H), 4.31 (d, *J* = 12.0 Hz, 1H), 3.42 (dd, *J* = 8.4, 12.0 Hz, 1Hz), 3.14 (dd, *J* = 5.2, 12.4 Hz, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 141.0, 138.0, 132.4, 130.7, 128.9, 128.5, 128.3, 128.1, 127.8, 127.5, 126.8, 126.6, 80.7, 70.7, 35.4.

Se Se

(4e) (2-methoxy-2-(4-methoxyphenyl)ethyl)(phenyl)selane

¹**H** NMR (300 MHz, CDCl₃) δ 7.51-7.43 (m, 2H), 7.27-7.18 (m, 5H), 6.92-6.83 (m, 2H), 4.34-4.25 (dd, J = 5.4, 8.4 Hz, 1H), 3.80 (s, 3H), 3.36 (dd, J = 8.4, 12.3 Hz, 1H), 3.21 (s, 3H), 3.11 (dd, J = 5.4

5.4, 12.3 Hz, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 159.4, 132.8, 132.5, 130.7, 128.9, 127.8, 126.7, 113.8, 82.7, 56.7, 55.2, 35.3.

(4f) (2-(4-bromophenyl)-2-methoxyethyl)(phenyl)selane

¹H NMR (300 MHz, CDCl₃) δ 7.50-7.41 (m, 4H), 7.25-7.21 (m, 3H), 7.19-7.15 (m, 2H), 4.32 (dd, J = 5.4, 8.1 Hz, 1H), 3.31 (dd, J = 8.1, 12.3 Hz, 1H), 3.22 (s, 3H), 3.08 (dd, J = 5.7, 12.6 Hz, 1H);
¹³C NMR (100 MHz, CDCl₃) δ 139.8, 132.6, 131.6, 130.2, 129.0, 128.4, 126.9, 121.9, 82.5, 57.0, 35.0.

(4g) (2-methoxy-2-(naphthalen-2-yl)ethyl)(phenyl)selane

¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 7.6 Hz, 3H), 7.73 (s, 1H), 7.54-7.38 (m, 5H), 7.24-7.15 (m, 3H), 4.55-4.46 (m, 1H), 3.47-3.34 (m, 1H), 3.27 (s, 3H), 3.20 (dd, *J* = 5.2, 12.4 Hz, 1H);
¹³C NMR (100 MHz, CDCl₃) δ 138.2, 133.2, 133.1, 132.6, 130.5, 128.9, 128.5, 127.8, 127.7, 126.8, 126.2, 126.1, 126.0, 124.0, 83.3, 57.0, 35.1.

(4h) (2-methoxycyclohexyl)benzene

¹**H NMR** (400 MHz, CDCl₃) δ 7.64-7.54 (m, 2H), 7.34-7.19 (m, 3H), 3.37 (s, 3H), 3.32-3.11 (m, 2H), 2.21-2.07 (m, 1H), 2.05-1.92 (m, 1H), 1.79-1.67 (m, 1H), 1.67-1.55 (m, 2H), 1.55-1.40 (m 1H), 1.31-1.22 (m, 2H);

¹³C NMR (100 MHz, CDCl₃) δ 135.3, 128.9, 128.8, 127.4, 82.2, 56.4, 47.4, 32.1, 30.3, 25.7, 23.4,

(4i) 1-phenyl-2-(phenylselanyl)ethyl acetate

¹**H NMR** (400 MHz, CDCl₃) δ 7.53-7.44 (m, 2H), 7.35-7.19 (m, 8H), 5.94 (dd, *J* = 6.0, 8.0 Hz, 1H), 3.39 (dd, *J* = 8.0, 12.8 Hz, 1H), 3.24 (dd, *J* = 5.6, 12.8 Hz, 1H), 2.0 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 169.9, 139.3, 133.0, 129.7, 129.0, 128.5, 128.3, 127.2, 126.5, 75.1, 33.3, 21.0.

(4j) 1-(4-bromophenyl)-2-(phenylselanyl)ethyl acetate

¹H NMR (300 MHz, CDCl₃) δ 7.49-7.39 (m, 4H), 7.28-7.20 (m, 3H), 7.20-7.12 (m, 2H), 5.87 (dd, J = 6.3, 7.5 Hz, 1H), 3.36 (dd, J = 7.5, 12.9 Hz, 1H), 3.20 (dd, J = 6.3, 12.9 Hz, 1H), 1.99 (s,3H);
¹³C NMR (75 MHz, CDCl₃) δ 169.8, 138.2, 133.0, 131.5, 129.0, 128.3,127.2, 126.3, 122.2, 74.5, 32.9, 20.9.

(4k) 1-(naphthalen-2-yl)-2-(phenylselanyl)ethyl acetate

¹H NMR (400 MHz, CDCl₃) δ 7.88-7.72 (m, 4H), 7.55-7.37 (m, 5H), 7.25-7.17 (m, 3H), 6.11 (dd, J = 6.4, 7.6 Hz, 1H), 3.48 (dd, J = 8.0, 12.8 Hz, 1H), 3.33 (dd, J = 5.6, 12.8 Hz, 1H), 2.03 (s, 3H);
¹³C NMR (100 MHz, CDCl₃) δ 170.0, 136.6, 133.2, 133.1, 133.0, 129.7, 129.0, 128.4, 128.0, 127.6, 127.2, 126.3, 126.2, 126.0, 124.0, 75.4, 33.2, 21.0.

(4I) 2-(phenylselanyl)cyclohexyl acetate

¹**H NMR** (300 MHz, CDCl₃) δ 7.62-7.48 (m, 2H), 7.32-7.19 (m, 3H), 4.91-4.73 (m, 1H), 3.27-3.07 (m, 1H), 2.22-1.98 (m, 2H), 1.94 (d, *J* = 4.8 Hz, 2H), 1.80-1.16 (m, 7H);

¹³C NMR (75 MHz, CDCl₃) δ 170.2, 134.9, 128.8, 128.4, 127.4, 75.3, 46.0, 32.2, 31.7, 25.7, 23.5, 21.0.

(5a) (2-methoxy-2-phenylethyl)(phenyl)sulfane

¹H NMR (300 MHz, CDCl₃) δ 7.40-7.28 (m, 8H), 7.26-7.23 (m, 1H), 7.20-7.13 (m, 1H), 4.31 (dd, J = 4.8, 8.1 Hz, 1H), 3.35 (dd, J = 8.1, 13.2 Hz, 1H), 3.24 (s, 3H), 3.16 (dd, J = 5.1, 13.2 Hz, 1H);
¹³C NMR (75 MHz, CDCl₃) δ 140.4, 136.4, 129.2, 128.8, 128.5, 128.1, 126.7, 125.9, 82.4, 57.0, 41.4.

(5b) (2-methoxy-2-(p-tolyl)ethyl)(phenyl)sulfane
¹H NMR (300 MHz, CDCl₃) δ 7.37-7.29 (m, 2H), 7.28-7.10 (m, 7H), 4.28 (dd, *J* = 4.8, 8.1 Hz, 1H), 3.34 (dd, *J* = 8.1, 13.2 Hz, 1H), 3.22 (s, 3H), 3.14 (dd, *J* = 5.1, 13.2 Hz, 1H), 2.34 (s, 3H);
¹³C NMR (75 MHz, CDCl₃) δ 137.8, 137.3, 136.5, 129.18, 129.15, 128.7, 126.6, 125.8, 82.1, 56.8, 41.3, 21.1.

(5c) (2-(4-chlorophenyl)-2-methoxyethyl)(phenyl)sulfane

¹H NMR (300 MHz, CDCl₃) δ 7.35-7.14 (m, 9H), 4.28, (dd, *J* = 5.4, 7.8 Hz, 1H), 3.33 (dd, *J* = 7.5, 13.2 Hz, 1H), 3.23 (s, 3H), 3.11 (dd, *J* = 5.4, 13.5 Hz, 1H);
¹³C NMR (75 MHz, CDCl₃) δ 138.9, 136.1, 133.8, 129.4, 128.9, 128.7, 128.1, 126.1, 81.8, 57.0, 41.3.

4. Spectral of these compounds

S46

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0