Electronic Supporting Information (ESI)

Non-Swellable Self-Healing Polymer under

Seawater with Long-Term Stability

Chaehoon Kim, Hirotaka Ejima, and Naoko Yoshie*

Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguroku, Tokyo 153-8505, Japan. E-mail: yoshie@iis.u-tokyo.ac.jp

Scheme S1 Synthetic scheme of catechol-containing polymer.

Fig. S1 ¹H NMR spectrum of P(DA-*co*-BA). The DA:BA molar ratio for P(DA-*co*-BA) was calculated to be 1:9 using the integration of 6.62–6.40 ppm (3H in DA) and 3.97 ppm (2H in BA).

Fig. S2 For the preparation of P-PDBA films, the solution of liquid-like P(DA-*co*-BA) in chloroform was mixed with the solution of PDBA in methanol. With the addition of TEA into the mixture of P(DA-*co*-BA) and PDBA, a tough and highly transparent P-PDBA film was obtained. However, without the addition of TE A, robust films could not be obtained.

Fig. S3 DMA results of P-PDBA polymers. As the feed ratio of PDBA was increased, the relative height of tan δ at around -10 °C was decreased indicating the higher cross-linking density.

Fig. S4 Laser scanning microscopy images of P-PDBA 100%. Cut scar of (a) before self-healing, and (b) after self-healed under seawater for 3 days. Inset values are the mean roughness (R_a).

Fig. S5 Dimensions of the dumbbell shaped sample.

Table S1The composition of the artificial seawater

Compound	Concentration $[g L^{-1}]$
NaCl	23.93
Na_2SO_4	4.01
KCl	0.68
NaHCO ₃	0.2
KBr	0.1
H ₃ BO ₃	0.026
NaF	0.003
MgCl ₂	5.07
CaCl ₂	1.14
SrCl ₂ /6H ₂ O	0.02

sample	Healing Condition	Young's modulus [MPa] ^{a)}	Break strength [MPa]	Strain at break [mm mm ⁻¹]	Toughness [MJ m ⁻³] ^{b)}	Healing efficiency [%] ^{c)}
P-PDBA 100%	Original	2.3 ± 0.3	2.8 ± 0.2	5.1 ± 0.4	10.6 ± 1.4	-
	1 day in seawater	2.0 ± 0.2	2.0 ± 0.1	1.6 ± 0.1	2.0 ± 0.2	19 ± 1.5
	2 days in seawater	2.2 ± 0.3	1.9 ± 0.3	1.7 + 0.5	2.2 ± 0.8	21 ± 8
	3 days in seawater	2.1 ± 0.1	2.6 ± 0.2	4.7 ± 1.1	9.6 ± 2.8	91 ± 27
	3 days in desiccator ^{d)}	2.4 ± 0.8	0.8 ± 0.1	0.3 ± 0.1	0.2 ± 0.0	1.5 ± 0.5
P-Ca ²⁺ 100%	Original	0.6 ± 0.01	2.3 ± 0.1	4.5 ± 0.5	5.4 ± 0.8	-
	3 days in seawater	1.2 ± 0.1	0.4 ± 0.04	0.4 ± 0.05	0.1 ± 0.02	1.8 ± 0.3

Table S2Results of self-healing test

^{a)} Calculated from the initial slope of stress strain curves. ^{b)} Integration of the area under the stress-strain curves. ^{c)} Quantified by percent recovery of toughness. ^{d)} The relative humidity of desiccator was less than 20%.

Table S3 Res	Results of swelling ratio			
Sample	Seawater pH 8.3ª)	Seawater pH 7.0 ^{b)}	Seawater pH 4.0 ^{b)}	DI water
P-PDBA 100%	1.9 wt%	2.3 wt%	2.6 wt%	20 wt%
P-Ca ²⁺ 100%	18 wt%	14 wt%	13 wt%	135 %

^{a)} The pH of the artificial seawater was pH was 8.3. ^{b)} Acidic seawater (pH 7.0 and 4.0) was prepared by adding (HCl aqueous solution, 1N) to the pH 8.3 artificial seawater.

P					
sample	Period	Young's modulus [MPa] ^{a)}	Break strength [MPa]	Strain at break [mm mm ⁻¹]	Toughness [MJ m ⁻³] ^{b)}
P-PDBA 100%	Original	2.3 ± 0.3	2.8 ± 0.2	5.1 ± 0.4	10.6 ± 1.4
	without dry	0.8 ± 0.2	0.6 ± 0.1	5.2 ± 0.5	2.0 ± 0.1
P-Ca ²⁺ 100%	after dry	2.1 ± 0.5	2.8 ± 0.2	5.4 ± 0.7	11.9 ± 0.8
	Original	0.6 ± 0.01	2.3 ± 0.1	4.5 ± 0.5	5.4 ± 0.8
	without dry	0.5 ± 0.1	0.5 ± 0.1	1.6 ± 0.1	0.5 ± 0.1
	after dry	1.8 ± 0.8	1.2 ± 0.1	0.9 ± 0.1	0.8 ± 0.2

Table S4	The results of mechanical properties of swollen and dried state of
network p	olymers (after 3 days immersion in seawater)

^{a)} Calculated from the initial slope of stress strain curves. ^{b)} Integration of the area under the stress-strain curves.

sample Period Young's modulus Break strength Strain at break [MPa] ^{a)} [MPa] [mm mm ⁻¹]	Toughness [MJ m ⁻³] ^{b)}
Original 2.3 ± 0.3 2.8 ± 0.2 5.1 ± 0.4	10.6 ± 1.4
$1 \text{ month} \qquad 2.1 \pm 0.4 \qquad 2.8 \pm 0.1 \qquad 5.5 \pm 0.8$	11.2 ± 1.7

Table S5 The results of mechanical stability test under seawater

 0.6 ± 0.01

 4.4 ± 1.2

Original

1 month

^{a)} Calculated from the initial slope of stress strain curves. ^{b)} Integration of the area under the stress-strain curves.

 2.3 ± 0.1

 1.8 ± 0.1

 4.5 ± 0.5

 0.8 ± 0.1

 5.4 ± 0.8

 0.9 ± 0.1

References

P-Ca2+ 100%

(1) Kester, D. R.; Duedall, I. W.; Connors, D. N; Pytkowicz, R. M.; Preparation of Artificial Seawater. *Limnology & Oceanography* 1967, **12**, 176-179.