Electronic supplementary information

The actual centrifugal acceleration (*a*) was calculated according to formula S (1) and S (2)

$$a = r \times \omega^2 \text{ (S1)}$$
$$\omega = \frac{2\pi N}{60} rad/s \text{ (S2)}$$

where r is the mean inner diameter of the casing (75 mm), and N is the rotational speed (rpm).

When N is 600 rpm, 900 rpm, 1200 rpm, 1500 rpm and 1800 rpm respectively, the corresponding *a* is 295.8 m/s², 665.5 m/s², 1183.2 m/s², 1848.7 m/s², and 2662.1 m/s², respectively.

Figure S1 DSC curve of PCM

Figure S2 DSC curves of microPCMs with different C/M

Figure S3 DSC curves of microPCMs with different emulsifier dosage

Figure S4 DSC curves of control microPCM and microPCMs prepared at different N in RPB

Reactors	Shell materials	PCMs	Preparation time (min)	Reaction temperature (°C)	Highest ΔH_{fus} (J/g)	Highest $C_a/E \%$	Morphology of microcapsules	References
RPB	Polyurea	Paraffin	6	25	105.59	48.5/97	Compact and smooth surfaces	This work
500ml beaker with a mechanical stirrer	Polyurea	Paraffin	60	25	84.5	38.8/77.6	rough surfaces	This work
round-bottom flask with a QSL high-speed disperse-machine	polyurea	paraffin	240	60	92.5	44.5/-	spherical shape with a coarse surface	(2016) ¹
a beaker with a magnetic stirrer	Polyurea	n-octadecane	150	35°C-30min 55°C-120min	170.4	-/99.6	spherical and the surface is dented	$(2015)^2$
a 250 ml three- neck round- bottomed flask with a mechanical stirrer	polyurea/polyurethane	butyl stearate and paraffin	180	60	82.62	60/-	relatively spherical profiles and compact surfaces	(2013) ³
conventional reactor with a mechanical stirrer	polyurea	n-octadecane	180	50	54.9	23.7/-	many microcapsules were damaged	(2012) ⁴
500-mL beaker with a mechanical stirrer	Polyurea/polyureathane	butyl stearate	255	70	85	-/95	smooth and compact surface	(2011) ⁵
250-mL beaker with a high shear mechanical stirrer consisting of a mesh plate encasing the stirrer blades	polyurea	n-octadecane	90	60	-	70/92	round and regular	(2007) ⁶
conventional reactor with a mechanical stirrer	polyurea	octadecane	120	25	117.5	-/94.7	Smooth and regular	(2006) ⁷

References

1. S. P. Zhan, S. H. Chen, L. Chen and W. M. Hou. Powder Technology, 2016, **292**: 217-222.

2. Q. Wu, D. Zhao, X. Jiao, Y. Zhang, K. J. Shea, X. Lu and G. Qiu. Industrial & Engineering Chemistry Research, 2015, **54**: 8130-8136.

3. Y. Ma, X. Chu, G. Tang and Y. Yao. Journal of colloid and interface science, 2013, **392**: 407-414.

4. W. Li, X. Zhang, X. Wang, G. Tang and H. Shi. Energy, 2012, 38: 249-254.

5. S. Lu, J. Xing, Z. Zhang and G. Jia. Journal of Applied Polymer Science, 2011, **121**: 3377-3383.

6. P. Siddhan, M. Jassal and A. K. Agrawal. Journal of Applied Polymer Science, 2007, **106**: 786–792.

7. J. F. Su, L. X. Wang, L. Ren, Z. Huang and X. W. Meng. Journal of Applied Polymer Science, 2006, **102**: 4996-5006.