## **Supplementary Information**

## Aromatic poly(ether ester)s derived from a naturally occurring building block nipagin and linear aliphatic $\alpha, \omega$ -diols

Keling Hu,<sup>†</sup> Dongping Zhao,<sup>†</sup> Guolin Wu\*<sup>†</sup> and Jianbiao Ma\*<sup>‡</sup>

<sup>†</sup>Key Laboratory of Functional Polymer Materials of MOE, Institute of Polymer

Chemistry, Nankai University, Tianjin 300071, P. R. China

<sup>‡</sup>School of Chemistry and Chemical Engineering, Tianjin University of Technology,

Tianjin 300191, P. R. China

Correspondence to: guolinwu@hotmail.com



Fig. S3 <sup>1</sup>H NMR spectra of N2.



Fig. S5 SEC traces of PN1-ws performed in THF.



Fig. S6 SEC traces of PN2-ωs performed in CHCl<sub>3</sub>.



Fig. S7 <sup>1</sup>H NMR spectra of PN1-ωs.



Fig. S8 <sup>13</sup>C NMR spectra of PN1-ωs.



**Fig. S9** <sup>1</sup>H NMR spectra of **PN2-ωs**.



Fig. S10 <sup>13</sup>C NMR spectra of PN2-ωs.



Fig. S11 FTIR spectra of PN1-ωs.



Fig. S12 FTIR spectra of PN2-ωs.



Fig. S13 The splitting situations of the methylenes adjacent to the hydroxy-oxygen with the indications of the dyads to which they are assigned in PN2-ωs.



Fig. S14 TGA derivative curves of PN1-ωs.



Fig. S15 TGA curves of PN2-ωs.



Fig. S16 TGA derivative curves of  $PN2-\omega s$ .



**Fig. S17** Glass-transition temperatures of **PN1-ωs** taken as the inflection points of the heating DSC traces of melt-quenched samples recorded at 20 °C min<sup>-1</sup>.



**Fig. S18** Glass-transition temperatures of **PN2-ωs** taken as the inflection points of the heating DSC traces of melt-quenched samples recorded at 20 °C min<sup>-1</sup>.



Fig. S19 Wide angle X-ray diffraction polts of PN1-ws.



Fig. S20 Wide angle X-ray diffraction polts of PN2-ωs.

|           | X-ray diffraction data |         |         |         |         |         |      |  |  |  |  |
|-----------|------------------------|---------|---------|---------|---------|---------|------|--|--|--|--|
| Polyester | 2θ (°) <sup>a</sup>    |         |         |         |         |         |      |  |  |  |  |
| PEN1      | 17.34 m                | 18.50 s | 21.88 m | 25.82 s |         |         | 0.36 |  |  |  |  |
| PPN1      | 16.34 s                | 21.12 m | 22.42 s | 23.56 m | 25.36 m |         | 0.39 |  |  |  |  |
| PBN1      | 16.46 s                | 19.86 m | 21.12 m | 23.78 s | 29.06 m |         | 0.42 |  |  |  |  |
| PHN1      | 19.04 w                | 21.92 w | 25.66 s |         |         |         | 0.39 |  |  |  |  |
| PDN1      | 17.54 s                | 19.82 s | 22.42 w | 24.02 s | 28.12 w |         | 0.45 |  |  |  |  |
| PDD1      | 17.80 s                | 19.68 s | 21.24 w | 22.44 w | 23.96 s | 27.72 w | 0.46 |  |  |  |  |

Table S1 Powder X-ray diffraction data of PN1-ωs

<sup>a</sup> The diffraction angles measured in powder diffraction patterns for samples coming directly from synthesis. Intensities visually estimated as follows: m, medium; s, strong; w, weak. <sup>b</sup> Crystallinity index calculated as the quotient between crystalline area and total area. Crystalline and amorphous areas in the X-ray diffraction pattern were quantified using Peak Fit v4.12 software.

Table S2 Powder X-ray diffraction data of PN2-ωs

|           | X-ray diffraction data |         |         |         |         |         |         |         |      |  |
|-----------|------------------------|---------|---------|---------|---------|---------|---------|---------|------|--|
| Polyester | 20 (°) <sup>a</sup>    |         |         |         |         |         |         |         |      |  |
| PEN2      | 21.12 s                | 22.70 m | 26.70 m | 29.16 m |         |         |         |         | 0.45 |  |
| PPN2      | 16.28 s                | 17.88 s | 22.14 s | 23.90 s | 25.90 s |         |         |         | 0.45 |  |
| PBN2      | 16.76 s                | 18.22 s | 20.66 m | 23.74 s | 24.74 s | 26.36 m | 27.68 w | 43.88 w | 0.50 |  |
| PHN2      | 16.84 m                | 24.66 s |         |         |         |         |         |         | 0.43 |  |
| PDN2      | 14.56 w                | 16.22 w | 17.64 m | 19.24 m | 20.32 m | 24.08 s |         |         | 0.48 |  |
| PDDN2     | 13.26 w                | 15.46 w | 16.74 w | 18.68 m | 20.38 s | 23.98 s |         |         | 0.52 |  |

<sup>a</sup> The diffraction angles measured in powder diffraction patterns for samples coming directly from synthesis. Intensities visually estimated as follows: m, medium; s, strong; w, weak. <sup>b</sup> Crystallinity index calculated as the quotient between crystalline area and total area. Crystalline and amorphous areas in the X-ray diffraction pattern were quantified using PeakFit v4.12 software.



**Fig. S21** Isothermal crystallization of **PDDN1**, **PEN2** and **PHN2** at the indicated temperatures. Relative crystallinity versus time plots (A), and  $Ln[-Ln(1-X_t)]$  versus  $Ln(t-t_0)$  plots (B).