Electronic Supplementary Information (ESI) for Dynamics of Structural Diffusion in Phosphoric Acid Hydrogen-Bond Clusters

Parichart Suwannakham and Kritsana Sagarik*

School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand

nskip = equally spaced time origin; ibegin_(m,n) = time origin; nsteps = constant
overlapped interval.

Figure S1 (cont.)b) Maximum possible shuttling distance (R_{O-H}^{Max}) of a proton confined in
O-H⁺..O H-bond.

c) Example of MSD plot for an exchanging proton in protonated H₃PO₄ H-bond obtained from NVT-BOMD simulation at 298 K.

- a) Interaction energy per H-bond ($\Delta E^{\text{H-bond}}$).
- b) R_{O-O} distance.
- c) Asymmetric stretching coordinate (Δd_{DA}).
- d) Asymmetric O-H stretching frequency (ν^{OH}).

Figure S2 (cont.) e) Isotropic shielding constant (σ_{H^*}).

Figure S3Plots of asymmetric O-H stretching frequencies (v^{OH}) and asymmetric stretching
coordinates (Δd_{DA}) of protonated H-bonds in H⁺(H₃PO₄)_n (n = 2–5) obtained from
RIMP2/TZVP calculations. v^{OH*} = threshold asymmetric O-H stretching
frequency; Δd_{DA}^{*} = threshold asymmetric stretching coordinate.

Figure S4Energy conservation and velocity plots obtained from NVT-BOMD simulations
on $H^+(H_3PO_4)_2$ at 298 K. Energies and velocity are in au. E^{Tot} , E^{Pot} and E^{Kin} =
total, potential and kinetic energies, respectively; v^{H+} = velocity of the exchanging
proton; T = temperature.

- Figure S5 a) b) Proton transfer profiles and time evolutions of the dihedral angles of H-bonds (1) and (2) in H⁺(H₃PO₄)₂ and H⁺(H₃PO₄)₄ obtained from NVT-BOMD simulations in low local-dielectric environment at 298 K, respectively.
 - c) d) Vibrational spectra of H-bonds (1) and (2) in $H^+(H_3PO_4)_2$ and $H^+(H_3PO_4)_4$ obtained from NVT-BOMD simulations in low local-dielectric environment at 298 K, respectively. R_{O-O} and R_{O-H} are in Å and $\omega(1)$ and $\omega(2)$ are in degrees; L and S = large-amplitude and small-amplitude O-O vibrations, respectively; A and A' = oscillatory shuttling peaks; B = structural diffusion peak.

- Figure S6 a) b) Proton transfer profiles and time evolutions of the dihedral angles of H-bonds (1) and (2) in H⁺(H₃PO₄)₂ and H⁺(H₃PO₄)₄ obtained from NVT-BOMD simulations in high local-dielectric environment at 298 K, respectively.
 - c) d) Vibrational spectra of H-bonds (1) and (2) in $H^+(H_3PO_4)_2$ and $H^+(H_3PO_4)_4$ obtained from NVT-BOMD simulations in high local-dielectric environment at 298 K, respectively. R_{O-O} and R_{O-H} are in Å and $\omega(1)$ and $\omega(2)$ in degrees; L and S = large-amplitude and small-amplitude O-O vibrations, respectively; B = structural diffusion peak; C and C' = characteristic peaks of proton in double-well potential.

Figure S7a) – b) Examples of the MSD plots of the exchanging proton obtained from NVT-
BOMD simulations on $H^+(H_3PO_4)_2$.

Figure S8 Plots of the natural log of the self-diffusion coefficients (D[§]) as a function of 1000/T. $\Delta E^{\dagger,D_{\$}}$ = activation energy obtained from the simple Arrhenius equation (Eqn (2)).

Gas	COSMO	ΔE^{Tot}	ΔE^{sol}	H-bond	R _{O-O}	Δd_{DA}	$\nu^{\rm OH}$	$\sigma_{H^{+}}^{corr}$	$\delta_{_{\mathrm{H}}^{+}}^{\mathrm{corr}}$	ω
G2-[1]	С	-153.9	-	(1)*	2.38	0.00	928	12.10	19.86	161
G2-[2]	C2-[2]	-150.6 -50.5	-284.0	(1)* (1)*	2.39 2.46	0.18 0.34	1516 1986	13.20 15.60	18.76 16.36	20 35
G3-[1]	C3-[1]	-280.3 -101.4	-288.0	(1) (2) (1) (2)	2.60 2.46 2.55 2.47	0.62 0.36 0.53 0.38	3033 2246 2718 2156	21.58 16.36 19.99 16.69	10.38 15.60 11.97 15.27	2 170 4 37
G3-[2]	C3-[2]	-272.7	-294.4	(1) (2) (1)	2.48 2.49 2.48	0.42 0.43 0.38	2428 2500 2146	17.41 17.65 18.32	14.55 14.31 13.64	56 67 157
G4-[1]	C4-[1]	-373.1	_	(1) (2)* (3)	2.55 2.39 2.52	0.45 0.53 0.15 0.54	2495 2854 1460 2712	- - -		47 178 52
G4-[2]	C4-[2]	-374.0	-311.5	(1) (2)*	2.56 2.41	0.54	2871 1615 2662	-	-	49 11
\$\$\$} \$		-135.6		 (3) (1) (2) (3) 	2.52 2.56 2.45 2.50	0.48 0.54 0.38 0.44	2668 2871 2156 2376	- - -	- - -	59 18 26 27

Table S1 Static Results of $H^+(H_3PO_4)_n$ (n = 2–5) Obtained from RIMP2/TZVP Calculations.^{*a*}

^{*a*} Energies, distances, vibrational frequencies and torsional angles are in kJ/mol, Å, cm⁻¹ and degrees, respectively. Isotropic shielding constants and ¹H NMR chemical shifts are in ppm. ΔE^{Tot} = total interaction energy; ΔE^{sol} = solvation energy; R_{O-O} = H-bond distance; Δd_{DA} = asymmetric stretching coordinate; ν^{OH} = asymmetric O-H stretching frequency; σ_{H+}^{corr} = isotopic shielding constant; δ_{H+}^{corr} = ¹H NMR chemical shift; ω = torsional angle of H-bond; COSMO = continuum aqueous solution; * = H-bond susceptible to proton exchange.

				0-0	=#DA	•	Η '	H^{+}	
	-466.1	-	(1)	2.52	0.49	2930	-	-	50
			(2)* (3)	2.39 2.55	0.15	1920 2231	-	-	176 35
5	-		(4)	2.48	0.58	2913	-	-	158
	-484.5	-	(1)	2.58	0.58	2974	_	_	54
			(2)	2.53	0.49	2721	-	-	13
0			(3) (4)	2.56 2.47	0.56	2860 2270	-	-	40 20
	о Э	-466.1 - -484.5	-466.1 - - -484.5 -	-466.1 - (1) (2)* (3) (4) $-484.5 - (1) (2) (3) (4)$	-466.1 - (1) 2.52(2)* 2.39(3) 2.55(4) 2.48	-466.1 - (1) 2.52 0.49 (2)* 2.39 0.15 (3) 2.55 0.53 (4) 2.48 0.58 -484.5 - (1) 2.58 0.58 (2) 2.53 0.49 (3) 2.56 0.56 (4) 2.47 0.37	-466.1 - (1) 2.52 0.49 2930 (2)* 2.39 0.15 1920 (3) 2.55 0.53 2231 (4) 2.48 0.58 2913 -484.5 - (1) 2.58 0.58 2974 (2) 2.53 0.49 2721 (3) 2.56 0.56 2860 (4) 2.47 0.37 2270 (3) 2.47 0.37 2270 (4) 2.47 0.37 2270 (4) 2.47 0.37 2270 (5) 2.53 0.49 2721 (6) 2.47 0.37 2270 (6) 2.47 0.37 2270 (7) 2.58 0.58 2913 (7) 2.58 0.58 2974 (8) 2.55 0.56 2860 (9) 2.57 0.57 2270 (9) 2.57 0.58 2913 (9) 2.58 0.58 2913 (9) 2.55 0.58 2913 (9) 2.55 0.58 2913 (9) 2.55 0.58 2913 (9) 2.55 0.58 2913 (9) 2.55 0.58 2913 (9) 2.55 0.58 2913 (9) 2.55 0.58 2913 (9) 2.55 0.58 2913 (9) 2.55 0.58 2913 (9) 2.55 0.58 2913 (9) 2.55 0.58 2913 (9) 2.55 0.56 2860 0 (9) 2.47 0.37 2270 (9) 2.57 0.57 2270 (9) 2.57 0.58 2913 (9) 2.58 0.58 2913 (9) 2.55 0.55 2913 (9) 2.5	-466.1 - (1) 2.52 0.49 2930 - (2)* 2.39 0.15 1920 - (3) 2.55 0.53 2231 - (4) 2.48 0.58 2913 - (4) 2.48 0.58 2913 - (4) 2.48 0.58 2913 - (4) 2.48 0.58 2913 - (4) 2.53 0.49 2721 - (3) 2.56 0.56 2860 - (4) 2.47 0.37 2270	-466.1 - (1) 2.52 0.49 2930 (2)* 2.39 0.15 1920 (3) 2.55 0.53 2231 (4) 2.48 0.58 2913 (4) 2.48 0.58 2913 (4) 2.48 0.58 2913 (4) 2.48 0.58 2913 (4) 2.53 0.49 2721 (3) 2.56 0.56 2860 (4) 2.47 0.37 2270 (5) 2.57 0.57 2270 (5) 2.57 2.57 0.57 2270 (5) 2.57 2.57 0.57 2.57

Table S1 (cont.)

Gas	COSMO	ΔE^{Tot}	ΔE^{sol}	H-bond	R _{O-O}	$\Delta d_{\rm DA}$	$\nu^{\rm OH}$	$\sigma_{_{\rm H}^{+}}$	$\delta_{_{_{_{_{_{}}}H}^+}}$	ω
G2-[1]										
Φ.		-151.4	-	(1)	2.39	0.02	919	13.14	18.78	161
start.		-								
G2-[2]	C2-[2]	147 (200.0	(1)	2 20	0.12	1207	12.50	10.22	7
		-14/.6	-280.0	(1)	2.39	0.12	1396	13.59	18.33	1
*	3	-46.2		(1)	2.46	0.34	1937	16.14	15.78	45
G3-[1]	C3-[1]									
	8	-266.8	-287.4	(1) (2)	2.60 2.48	0.60 0.40	2944 2376	21.22 17.66	14.26 10.70	1 52
NT Y	(2) (2)							10.00	1	
(1)		-86.9		(1) (2)	2.55 2.49	0.51 0.41	2616 2261	19.83 17.74	12.09 14.18	14 24
G3-[2]	C3-[2]									
a 🍣		-265.6	-278.1	(1) (2)	2.49 2.49	0.41 0.41	2429 2353	17.76 17.77	14.16 14.15	84 95
2)		-76.0		(1)	2 50	0.42	2346	17.82	14 10	22
(1)	(1)	-70.0		(1) (2)	2.50	0.42	2289	17.79	14.13	3
G4-[1]										
0.[1]		-350.7	-	(1)	2.69	0.75	3139	27.84	4.08	144
(2)				(2) (3)	2.41 2.52	0.07 0.44	1358 2415	20.35	15.61 11.57	161 145
(1)	Å.	-								
G4-[2]	C4-[2]	250 6		(1)	0.50	0.44	0500	20.10	11 74	07
	Ľ.	-359.6	-	(1) (2)	2.52 2.41	0.46 0.21	2598 1518	20.18 14.26	11.74 17.66	87 64
(1) (3)	3)			(3)	2.56	0.54	2797	18.93	12.99	80
		-								

Table S2	Static Results of H ⁺ (H ₃ PO ₄)	(n = 2-5) Obtained from	n B3LYP/TZVP Calculations. ^a
----------	--	-------------------------	---

^{*a*} Energies, distances, vibrational frequencies and torsional angles are in kJ/mol, Å, cm⁻¹ and degrees, respectively. Isotropic shielding constants and ¹H NMR chemical shifts are in ppm. ΔE^{Tot} = total interaction energy; ΔE^{sol} = solvation energy; R_{O-O} = H-bond distance; Δd_{DA} = asymmetric stretching coordinate; ν^{OH} = asymmetric O-H stretching frequency; σ_{H+} = isotopic shielding constant; δ_{H+} = ¹H NMR chemical shift; ω = torsional angle of H-bond; COSMO = continuum aqueous solution; * = H-bond susceptible to proton exchange.

Table S2	(cont.)		
Gas		COSMO	

Gas	COSMO	ΔE^{Tot}	ΔE^{sol}	H-bond	R _{O-O}	$\Delta d_{\rm DA}$	$\nu^{\rm OH}$	$\sigma_{\rm H^+}^{\rm corr}$	$\delta_{_{\rm H}^+}^{ m corr}$	ω
G5-[1]		-447.8	-	(1) (2) (3) (4)	2.58 2.43 2.46 2.58	0.56 0.27 0.34 0.56	2870 1792 2117 2894	- - -	- - -	70 165 55 173
G5-[2]	(4)	-460.5	-	(1) (2) (3) (4)	2.54 2.57 2.46 2.58	0.51 0.54 0.34 0.57	2710 2782 2087 2920	- - -	- - -	20 40 14 55

Gas	COSMO	ΔE^{Tot}	ΔE^{sol}	H-bond	R _{O-O}	Δd_{DA}	$\nu^{\rm OH}$	$\sigma_{\rm H}^{corr}$	$\delta^{ m corr}_{ m H}$	ω
G2-[3]	C2-[3]									
[-]	[-]	-137.4	-99.3	(1)	2.58	0.57	2867	20.74	11.22	11
				(2)	2.58	0.57	2867	20.88	11.08	11
		-66. 1		(1)	2.59	0.57	2832	20.74	11.22	21
(2)	(2)			(2)	2.58	0.57	2832	20.71	11.25	38
G3-[3]	C3-[3]	-198 3	-142.4	(1)	2.54	0.53	2771	20.00	11.96	82
05 [5]	00 [0]	190.5	1 12.1	(1) (2)	2.68	0.72	3181	22.83	9.13	107
1	1			(3)	2.64	0.66	3118	22.39	9.57	27
(1) (2)	(1) (2)	-84.8		(1)	2.54	0.51	2700	11.98	12.12	80
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ • · · · · •			(2)	2.74	0.78	3257	23.62	8.34	102
(3)	(3)			(3)	2.60	0.60	2925	21.65	10.31	20
G3-[4]	C3-[4]	-225 5	-162.9	(1)	2.55	0.53	2750	19 79	12.17	72
05 [1]	05[1]	220.0	102.9	(1) (2)	2.55	0.53	2750	19.85	12.11	67
ř.	<b>*</b>			(3)	2.55	0.53	2750	19.92	12.04	69
(1) (2)	(1) (2)	-132.6		(1)	2.62	0.62	3029	22.56	9.40	1
	<b>N N</b>			(2)	2.60	0.61	2943	21.67	10.29	73
(3)	(3)			(3)	2.55	0.52	2700	19.66	12.30	39
G3-[5]	C3-[5]	-242.8	-121.6	(1)	2.54	0.51	2699	19 37	12.59	5
05 [5]	05 [5]	212.0	121.0	(2)	2.56	0.55	2873	20.28	11.68	18
	(I)			(3)	2.74	0.88	3399	25.60	6.36	80
(3)		-108.5		(1)	2.55	0.51	2682	19.49	12.47	4
(2)				(2)	2.59	0.59	2904	20.65	11.31	13
				(3)	2.74	0.89	3342	25.66	6.30	80

**Table S3** Example of Static Results of  $(H_3PO_4)_n$  (n = 2–3) Obtained from RIMP2/TZVP Calculations.^{*a*}

^{*a*} Energies, distances, vibrational frequencies and torsional angles are in kJ/mol, Å, cm⁻¹ and degrees, respectively. Isotropic shielding constants and ¹H NMR chemical shifts are in ppm.  $\Delta E^{Tot}$  = total interaction energy;  $\Delta E^{sol}$  = solvation energy;  $R_{O-O}$  = H-bond distance;  $\Delta d_{DA}$  = asymmetric stretching coordinate;  $\nu^{OH}$  = asymmetric O-H stretching frequency;  $\sigma_{H+}^{corr}$  = isotopic shielding constant;  $\delta_{H+}^{corr}$  = ¹H NMR chemical shift;  $\omega$  = torsional angle of H-bond; COSMO = continuum aqueous solution.

Table S4Drifts in Energies and Velocity of the Exchanging Proton Obtained from NVT-<br/>BOMD Simulations on H+(H3PO4)2 at 298 K.a

Α	$\delta_{\rm A}$	<a></a>	σ _A
$\mathrm{E}^{\mathrm{Tot}}$	0.0260	-1286.5103	0.0079
E ^{Pot}	0.0698	-1286.5312	0.0049
$\mathrm{E}^{\mathrm{Kin}}$	0.0406	0.0208	0.0052
$\mathbf{v}^{\mathrm{H}+}$	0.1246	0.0012	0.0005
Т	0.0407	292.4317	73.0601

^{*a*} Energies and velocity are in atomic unit (au) and temperature in K.  $\delta_A$  = drift of property A; <A> = average of property A;  $\sigma_A$  = SD of property A; E^{Tot} = total energy; E^{Pot} = potential energy; E^{Kin} = kinetic energy; v^{H+} = velocity of proton; T = temperature.

Table S5Self-Diffusion Coefficients (D) of the Exchanging Proton Obtained from NVT-<br/>BOMD Simulations on H+(H3PO4)2 over the Temperature (T) Range of 298–430<br/>K.a

Т	D MSD§ (×10 ⁻⁵ )	Т	D ¹ H PFG-NMR* (×10 ⁻⁵ )
298	0.12	298	0.04
315	0.27	310	0.07
330	0.36	330	0.14
350	0.45	350	0.23
380	0.67	380	0.46
400	0.66	400	0.66
430	1.16	420	0.90

^{*a*} D and T are in cm² s⁻¹ and K, respectively. * = values taken from Ref. [11]; § = values obtained from the MSD plots.

Table S6¹H NMR Chemical Shifts, Line Widths and the Areas under the Lorentzian Peak<br/>Functions A, A' and B obtained from NVT-BOMD Simulations on H⁺(H₃PO₄)₂<br/>over the Temperature Range of 298–430 K.^a

Т	Peaks	$\delta^{\text{corr,MD}}_{\text{H}^+}$	$\Delta \delta^{\text{corr,MD}}_{H^+}$	Ι	$\ln \left( T_{2}^{\ast}\right)$
200	A	19.78	0.36	16	13.68
298	A' B	19.19 18.41	0.58 0.48	8 5	13.19
315	A A' B	19.76 19.23 17.96	0.32 0.62 1.32	14 9 7	13.79 13.14 13.28
330	A A' D	19.91 19.46	0.15 0.63	6 13	14.54 13.12
280	B	18.45 19.83	0.54	5	13.28 14.72
380	A B	19.42	0.28 1.37	5 15	13.93
400	A A' B	19.66 19.42 19.02	0.20 0.07 1.02	5 2 13	14.24 15.31 12.65
430	A A' B	19.74 19.58 18.65	0.03 0.62 1.13	2 16 7	16.02 13.14 13.47

^{*a* ¹}H NMR chemical shift and line width are in ppm. The temperature and area are in K and arbitrary unit, respectively.  $\delta^{\text{corr,MD}}_{H^+} = {}^{1}$ H NMR chemical shift;  $\Delta \delta^{\text{corr,MD}}_{H^+} = {}^{1}$ H NMR line width; **A** and **A'** = oscillatory shuttling peaks; **B** = structural diffusion peak; T = temperature; I = area under the Lorentzian peak function.