Supplementary information for:

Determination of Crystal Structure and Photoluminescence Properties of NaEu_{1-x}Gd_x(MoO₄)₂ Phosphor Synthesised by Water-Assisted Low-Temperature Synthesis Technique

Takuya Hasegawa,^{a,†} Sun Woog Kim,*^{a,‡} Yusuke Abe,^a Masaru Muto,^a Mizuki Watanabe,^a Tatsuro Kaneko,^a Kazuyoshi Uematsu,^a Tadashi Ishigaki,^a Kenji Toda,*^a Mineo Sato,^d Junko Koide,^e Masako Toda^e and Yoshiaki Kudo^e

^aGraduate School of Science and Technology, Niigata University, 8050 Ikarashi 2nocho, Niigata, 950-2181, Japan.

^bDepartment of Chemistry and Chemical Engineering, Niigata University, 8050 Ikarashi 2-nocho, Niigata 950-2181, Japan.

^cN-Luminescence Corporation, 8867-3 Ikarashi 2-nocho, Niigata 950-2101, Japan.

[†]Current address: Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku City, Kochi 783-8502, Japan.

[‡]Current address: Department of Nanotechnology and Advanced Material Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.

Corresponding author:

S.W. Kim; <u>skim80@sejong.ac.kr</u>

K. Toda; ktoda@eng.niigata-u.ac.jp

Content:

- 1. Results of the synthesis of $RbVO_3$ phosphor by the WASSR method as a function of solvents; Table S1
- Crystallographic data for NaEu(MoO₄)₂ phosphor prepared by the conventional SSR method; Figure S1 and Tables S2 and S3
- Explanation for the treatment of crystallographic data; Figure S2 and Tables S4~S6
- 4. Crystallographic data for $NaEu_{1-x}Gd_x(MoO_4)_2$ (x = 0 and 0.30) phosphors prepared by the WASSR method; Table S7

Synthesis conditions of RbVO ₃				
Raw materials R	Raw materials Rb ₂ CO ₃ , V ₂ O ₅			
Solvent 10 wt% for the obtained material				
Mixing time 3	min.			
Solvent	Obtained material	Solvent	Obtained material	
de-ionized water	RbVO ₃	chloroform	Rb ₂ CO ₃ , V ₂ O ₅	
ethanol (95%)	$RbVO_3, Rb_2CO_3, V_2O_5$	acetylacetone	Rb ₂ CO ₃ , V ₂ O ₅	
ethanol (dehydration)	Rb_2CO_3, V_2O_5	tetrahydrofuran (dehydration)	Rb ₂ CO ₃ , V ₂ O ₅	
hydrogen peroxide	Rb ₂ CO ₃ , V ₂ O ₅	2-butanone	Rb ₂ CO ₃ , V ₂ O ₅	
methanol	Rb ₂ CO ₃ , V ₂ O ₅	cyclohexane	Rb ₂ CO ₃ , V ₂ O ₅	
acetone	Rb ₂ CO ₃ , V ₂ O ₅	toluene	Rb ₂ CO ₃ , V ₂ O ₅	
hexanol	Rb ₂ CO ₃ , V ₂ O ₅	xylene	Rb ₂ CO ₃ , V ₂ O ₅	
1-butanol	Rb ₂ CO ₃ , V ₂ O ₅	1,1,1-trichloroethane	Rb ₂ CO ₃ , V ₂ O ₅	
n- pentyl alcohol	Rb ₂ CO ₃ , V ₂ O ₅	tetrachloroethylene	Rb ₂ CO ₃ , V ₂ O ₅	
3-methyl-1-butanol	Rb ₂ CO ₃ , V ₂ O ₅	chlorobenzene	Rb ₂ CO ₃ , V ₂ O ₅	
2-methoxyethanol	Rb ₂ CO ₃ , V ₂ O ₅	octylphenol ethoxylate	Rb ₂ CO ₃ , V ₂ O ₅	
benzyl alcohol	Rb ₂ CO ₃ , V ₂ O ₅	ligroin	Rb ₂ CO ₃ , V ₂ O ₅	
ethylene glycol	Rb ₂ CO ₃ , V ₂ O ₅	bis(2-ethylhexyl)phthalate	Rb ₂ CO ₃ , V ₂ O ₅	
propylene glycol	Rb ₂ CO ₃ , V ₂ O ₅	dimethyl carbonate	Rb ₂ CO ₃ , V ₂ O ₅	
1,4-butanediol	Rb ₂ CO ₃ , V ₂ O ₅	propylene carbonate	Rb ₂ CO ₃ , V ₂ O ₅	
diethylene glycol	Rb ₂ CO ₃ , V ₂ O ₅	formic acid	Rb ₂ CO ₃ , V ₂ O ₅	
polyethylene glycol	Rb ₂ CO ₃ , V ₂ O ₅	oleic acid	Rb ₂ CO ₃ , V ₂ O ₅	
1-amino-2-propanol	Rb ₂ CO ₃ , V ₂ O ₅	phosphoric acid	Rb ₂ CO ₃ , V ₂ O ₅	
2,2'-iminodimethano	l Rb_2CO_3, V_2O_5			

 Table S1.
 Synthesis of RbVO₃ phosphor by the WASSR method as a function of solvents

Figure S1. Observed (+) and calculated (red line) X-ray powder diffraction data of $NaEu(MoO_4)_2$ phosphor prepared by the conventional SSR method as well as the difference profile (blue bottom line) between them. Bragg reflection peak positions are shown as vertical bars. Inset shows the R-factors and S value of this refinement.

NaEu(MoO₄)₂ Atom Site Occupancy Z U_{iso} (nm²) х y Nal 4e 0.485(3) 1/20 0.1248(7) 0.0088(5) Eu1 4e 0.5149 1/20 0.1248 0.008771/2 Mo1 4e 0 0.6247(5) 0.0067(3) 1 0.637(2) 01 8f 1 0.136(2) 0.3010(7) 0.015(1) 02 8f 1 0.267(2) 0.232(2) 0.0357(6) 0.01548

Table S2. Refined structural parameters of $NaEu(MoO_4)_2$ phosphor prepared by the conventional SSR method.

Because of the disordering of Eu and Na atoms, the fractional coordinate and atomic displacement parameters (U_{iso}) were constraint to the same values, respectively.

	WASSR method	SSR method	
Metal-oxygen bonding	Bond distance (nm)	Bond distance (nm)	
Eu1/Na1-O1	$0.262(1) \times 2$	$0.263(1) \times 2$	
Eu1/Na1-O1	$0.2688(6) \times 2$	0.2592(8) × 2	
Eu1/Na1-O2	$0.230(1) \times 2$	$0.238(1) \times 2$	
Eu1/Na1-O2	$0.2345(6) \times 2$	0.2366(9) × 2	
Mo1-O1	$0.1537(8) \times 2$	$0.155(1) \times 2$	
Mo1-O2	$0.198(1) \times 2$	0.193(1) × 2	

Table S3. Bond distances between metal and oxygen in the $NaEu(MoO_4)_2$ nanophosphor prepared by WASSR method.

3. Explanation for the treatment of crystallographic data

3.1. Transformation of Space group No. 15

The standard expression of No. 15 is " $C \ 1 \ 2/c \ 1$ ", sometimes abbreviated as "C2/c". The structure parameters of NaEu(MoO₄)₂ have already been refined based on the non-standard $I \ 1 \ 2/b \ (I2/b)$.²⁾ The International Union of Crystallography (IUCr) recommends the usage of standard expression of space group. In $I \ 1 \ 2/b$ space group, the unique axis is c axis, not recommended either, formally b axis in monoclinic system. So, we decided the refinement for our sample to be based on the standard $C \ 1 \ 2/c \ 1$.

The relationship of axes between $C \mid 2/c \mid$ and $I \mid 1 \mid 2/b$ is shown in **Figure S2**. The subscript letters correspond to Bravais lattices, C and I. The basic vectors, c_I and b_c , are perpendicular to the paper.

Figure S2. Relationship of axes between $C \mid 2/c \mid$ and $I \mid 1 \mid 2/b$

The origin of *C* lattice should be moved on (0,1/2,1/2), this being because of the transformation from *I* to *C*.¹⁾ The linear combinations between these vectors can be expressed as follows;

$$a_{c} = a_{I} - b_{I}$$

$$b_{c} = -c_{I}$$

$$c_{c} = b_{I}$$
and
$$t = \frac{1}{2}b_{I} + \frac{1}{2}c_{I}$$

where t is the translational vector of origin. By means of matrices and vectors, we can

express these equations to the following equation.

$$\begin{pmatrix} a_C \\ b_C \\ c_C \end{pmatrix} = Q \begin{pmatrix} a_I \\ b_I \\ c_I \end{pmatrix} + t \qquad (1)$$

where

$$Q = \begin{pmatrix} 1 & -1 & 0\\ 0 & 0 & -1\\ 0 & 1 & 0 \end{pmatrix} and \ t = \begin{pmatrix} 0\\ 1/2\\ 1/2 \end{pmatrix}$$

We can also an inverse relation like

$$\begin{pmatrix} a_I \\ b_I \\ c_I \end{pmatrix} = Q^{-1} \begin{pmatrix} a_C \\ b_C \\ c_C \end{pmatrix} - t \quad (2)$$

where

$$Q^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$

The atomic coordinates, (x_i, y_i, z_i) , can be transformed by the following equation.

$$\begin{pmatrix} x_C \\ y_C \\ z_C \end{pmatrix} = R \begin{pmatrix} x_I \\ y_I \\ z_I \end{pmatrix} - Rt \quad (3)$$

where

$$R = Q^{t^{-1}}$$

and Q^t means transposed matrix of Q.

3.2. Rietveld refinement based on $C \mid 2/c \mid$

Using above equations (1) and (3), the reported crystallographic data²⁾ were transformed to the data on $C \ 1 \ 2/c$ and taken as initial refined parameters for Rietveld analysis. Treatment of the XRD patterns was carried out using the Rietan-FP program.³⁾ Because of the disordering of Eu and Na atoms, the fractional coordinate and atomic displacement parameters (U_{iso}) were constraint to the same values, respectively. In the early stage of refinement, the values of U_{iso} for two oxygen atoms, O1 and O2, were converged to too much different values in spite of the fact that the two atoms have similar crystallographic environment. This is because the oxygen atoms are of much less atomic number compared heavy Eu and Mo in NaEu(MoO₄)₂, making their U_{iso} 's less reliable. Therefore, the U_{iso} values were constraint to be same. Finally, the refinement was converged to an excellent fitting, having R factors; R_{wp} =1.690%, R_p =1.139%, R_R =10.335%, R_e =0.737%, S=2.2936, R_B =3.567%, R_F =2.816% and

$$R_{F^2=3.876.}$$

Table S4 shows the results based on $C \mid 2/c \mid$ Using the equation (2), the data were transformed back to the data on $I \mid 1 \mid 2/b$, making the data easily compared with those previously reported²). Table S5 and Table S6 on $C \mid 2/c \mid$ are our data and the reported data, respectively.

Table S4. Structural parameters of NaEu(MoO₄)₂ refined on space group $C \ 1 \ 2/c \ 1$. SG= $C \ 1 \ 2/c \ 1$, a=0.74214(6) nm, b=1.14644(1) nm, c=0.52475(4) nm, $\beta=134.999(4)^{\circ}$, $V=0.31570(4) \text{ nm}^3$

Atom	site	g	x	У	Z	$U_{ m iso}$
Eu1	4e	0.504(3)	0	0.1210(4)	1/4	0.0094(5)
Na1	4e	0.4961	0	0.12096	1/4	0.00943
Mo1	4e	1	0	0.6266(3)	1/4	0.0076(4)
01	8f	1	0.127(1)	0.2950(6)	0.077(2)	0.013(1)
02	8f	1	0.224(2)	0.0381(5)	0.143(2)	0.01271

Table S5. Structural parameters transformed from space group $C \ 1 \ 2/c \ 1$ to space group $I \ 1 \ 1 \ 2/b$. SG= $I \ 1 \ 2/b$, a=0.52478 nm, b=0.52475 nm, c=1.14644 nm, $\gamma=89.9992 \text{ °}$, $V=0.31570 \text{ nm}^3$

Atom	site	g	x	У	Z	$U_{ m iso}$
Eu1	4e	0.5039	0	1/4	0.1210	0.0094(5)
Na1	4e	0.4961	0	1/4	0.1210	0.00943
Mo1	4e	1	0	1/4	0.6266	0.0076(4)
01	8f	1	0.8730	0. 9496	0.2950	0.013(1)
O2	8f	1	0.7764	0.9194	0.0380	0.01271

Table S6. Structural parameters of NaEu(MoO₄)₂ reported²⁾ . SG=*I* 1 1 2/*b*, *a*=0.52421(1) nm, *b*=0.52385(1) nm, *c*=1.14543(2) nm, γ =89.949(3) °, *V*=0.31454 nm³

Atom	site	g	x	У	Ζ	$U_{ m iso}$
Eu1	4e	0.5	1/2	1/4	0.8758(4)	0.0077(5)
Na1	4e	0.5	1/2	1/4	0.8758(4)	0.0077(5)
Mo1	4e	1	1/2	1/4	0.3738(4)	0.0097(5)
01	8f	1	0.373(1)	0.016(2)	0.2810(7)	0.0017(8)
O2	8f	1	0.749(2)	0.434(1)	0.0478(6)	0.0017(8)

Table S7. Refinement and cell parameters of the $NaEu_{1-x}Gd_x(MoO_4)_2$ (x = 0 and 0.30) phosphors.

	NaEu(MoO ₄) ₂	Na(Eu _{0.70} Gd _{0.30})(MoO ₄) ₂
Crystal system	monoclinic	monoclinic
Space group	C2/c	C2/c
<i>a</i> (nm)	0.74214(6)	0.7412(4)
<i>b</i> (nm)	1.14644(1)	1.14694(8)
<i>c</i> (nm)	0.52475(4)	0.5241(3)
β (°)	134.999(4)	135.00(3)
$V(nm^3)$	0.31570(4)	0.3150(3)

References

1. L. M. Gelato and E. Parthé, J. Appl. Crystallogr., 1987, 20, 139.

2. A. Arakcheeva, D. Logvinovich, G. Chapuis, V. Morozov, S. V. Eliseeva, J. C. G. Bünzli and P. Pattison, *Chem. Sci.*, 2012, **3**, 384.

3. F. Izumi and K. Momma, Solid State Phenom., 2007, 130, 15