Supporting information

Table S1 The change ($\Delta\theta$, deg) of angle C–T–Y (T = C, Si and Ge; Y = H, F and Cl)

in the dyads relative to that in the monomers	
	-

dyads	Δθ
PhCF ₃ …PyI	-0.58
PhSiF ₃ …PyI	-12.66
PhGeF ₃ …PyI	-13.73
PhSiH ₃ …PyI	-4.50
PhSiCl ₃ …PyI	-11.78
PhSiF ₃ …PyBr	-12.65

Table S2 The increased/decreased percentage of binding energies of both interactions in the triads

triads	$\Delta\Delta E_{\mathrm{TB}}\%$	$\Delta\Delta E_{\rm XB}$ %
PhCF ₃ …PyI…NH ₃	-41.3%	-6.1%
PhSiF ₃ …PyI…NH ₃	14.7%	30.8%
PhGeF ₃ …PyI…NH ₃	9.5%	34.3%
PhSiH ₃ …PyI…NH ₃	20.3%	11.7%
PhSiCl ₃ …PyI…NH ₃	15.5%	35.1%
PhSiF ₃ …PyI…NCH	12.9%	37.0%
$PhSiF_{3} \cdots PyI \cdots NHCH_{2}$	14.7%	28.3%
$PhSiF_{3} \cdots PyI \cdots NH_{2}CH_{3}$	16.1%	26.6%
PhSiF ₃ …PyBr…NH ₃	12.3%	43.1%

triads	$\Delta\rho_{TB/HB}$	Δho_{XB}
PhCF ₃ …PyI…NH ₃	-0.0001	-0.0001
$PhSiF_{3} \cdots PyI \cdots NH_{3}$	0.0041	0.0021
PhGeF ₃ …PyI…NH ₃	0.0032	0.0023
PhSiH ₃ …PyI…NH ₃	0.0030	0.0010
PhSiCl ₃ …PyI…NH ₃	0.0047	0.0023
PhSiF ₃ …PyI…HCN	0.0036	0.0014
$PhSiF_{3} \cdots PyI \cdots NHCH_{2}$	0.0041	0.0023
$PhSiF_{3} \cdots PyI \cdots NH_{2}CH_{3}$	0.0044	0.0025
PhSiF ₃ …PyBr…NH ₃	0.0035	0.0011

Table S3. Change of electron density ($\Delta \rho$, au) in the triads relative to the dyads.

Table S4. Change of second-order perturbation energies ($\Delta E^{(2)}$, kJ/mol) in the triads relative to the dyads.

triads	$\Delta E_1^{(2)}$	$\Delta E_2^{(2)}$	$\Delta E_3^{(2)}$
PhCF ₃ …PyI…NH ₃	0.00		-0.14
PhSiF ₃ …PyI…NH ₃	17.90	0.52	6.94
PhGeF ₃ …PyI…NH ₃	40.13	0.17	7.82
PhSiH ₃ …PyI…NH ₃	12.75	7.44	3.26
PhSiCl ₃ …PyI…NH ₃	26.88	3.01	8.03
PhSiF ₃ …PyI…HCN	51.12	1.08	3.39
$PhSiF_{3} \cdots PyI \cdots NHCH_{2}$	19.95	1.21	7.74
PhSiF ₃ …PyI…NH ₂ CH ₃	62.62	1.29	9.03
PhSiF ₃ …PyBr…NH ₃	51.37	1.01	2.67

Figure S1 Diagram of Lp(Cl) $\rightarrow \sigma^*$ (C–Si) orbital interaction in PhSiCl₃