Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

New 10H perovskites $Ba_5Ln_{1-x}Mn_{4+y}O_{15-\delta}$ with spin glass behaviour

Congling Yin ^{a*}, Genfang Tian ^b, Guobao Li ^c, Fuhui Liao ^c and Jianhua Lin ^c

Supporting Information

Figure S1. The fitted XRD plot of the $Ba_5Sm_{0.98}Mn_{4.01}O_{15-\delta}$ sample. The inset expands the low-angle regions

Figure S2. The fitted XRD plot of the $Ba_5Eu_{0.87}Mn_{4.02}O_{15-\delta}$ sample. The inset expands the low-angle regions

Figure S3. The fitted XRD plot of the $Ba_5Gd_{0.82}Mn_{4.17}O_{15-\delta}$ sample. The inset expands the low-angle regions

Figure S4. The fitted XRD plot of the $Ba_5Tb_{0.85}Mn_{4.15}O_{15-\delta}$ sample. The inset expands the low-angle regions

Figure S5. The fitted XRD plot of the $Ba_5Dy_{0.86}Mn_{4.12}O_{15-\delta}$ sample. The inset expands the low-angle regions

Figure S6. The fitted XRD plot of the $Ba_5Ho_{0.86}Mn_{4.12}O_{15-\delta}$ sample. The inset expands the low-angle regions

Figure S7. The fitted XRD plot of the $Ba_5Er_{0.82}Mn_{4.17}O_{15-\delta}$ sample. The inset expands the low-angle regions

Figure S8. The fitted XRD plot of the $Ba_5Tm_{0.80}Mn_{4.14}O_{15-\delta}$ sample. The inset expands the low-angle regions

Figure S9. The fitted XRD plot of the $Ba_5Yb_{0.83}Mn_{4.17}O_{15-\delta}$ sample. The inset expands the low-angle regions

Figure S10. The fitted XRD plot of the $Ba_5Lu_{0.78}Mn_{4.21}O_{15-\delta}$ sample. The inset expands the low-angle regions

TABLE S1. The structural parameters for $Ba_5Ln_{1-x}Mn_{4+y}O_{15-\delta}$ from fits to x-ray diffraction profiles, showing lattice parameters, atomic coordinates, isotropic temperature (*U*) factors for the cation sites (oxygen atom values were fixed to be 0.025 Å), and M-O and Mn-Mn distances. The structure has space group $P6_3/mmc$. Sites: Ba1: 2d ($\frac{3}{3}$ $\frac{1}{3}$ $\frac{1}{3}$); Ba2: 4f ($\frac{3}{3}$ $\frac{3}{3}$ z₁); Ba3: 4e (0 0 z₂); Ln: 2a(0 0 $\frac{1}{2}$); Mn1: 4f ($\frac{3}{3}$ $\frac{3}{3}$); Mn2: 4f ($\frac{3}{3}$ $\frac{3}{3}$); O1: 6h(x₁ -x₁ $\frac{1}{3}$); O2: 12k (x₂ -x₂ z₅); O3: 12k (x₃ -x₃ z₆)

Ln	a/Å	c/Å	V/ų	Ba1:	Ba2:	Ba2:	Ba3:z ₂	Ba3:	Ln:	Mn1:	Mn1:	Mn2:	Mn2:	01: x ₁	02: x2	02: z5	03: x ₃	03: z ₆	d _{Ln-O}	d ^[a] _{Mn1-0}	d ^[a] _{Mn2-0}	d _{Mn1-Mn2}	d _{Mn2-Mn2}
				100xU	Z ₁	100xU,/Å		100xU	100xU	Z ₃	100xU,	Z4	100xU						/ Å	/Å	/Å	/Å	/Å
				/Ų		2		/Ų	/Ų		/Ų		/Ų										
Sm	5.7978(1)	24.0387(4)	699.79(2)	1.0(2)	0.4392(1)	1.1(1)	0.3419(1)	0.8(1)	2.1(2)	0.4040(3)	0.3(3)	0.2995(3)	2.4(3)	0.179(2)	0.177(1)	0.4445(7)	0.488(1)	0.3505(6)	2.22(1)	1.93(1)	1.97(1)	2.52(1)	2.37(1)
Eu	5.7957(1)	23.9851(3)	697.72(2)	1.5(2)	0.4396(1)	1.7(1)	0.3422(1)	1.4(1)	2.2 (2)	0.4042(3)	1.4(3)	0.2996(3)	2.8(3)	0.186(2)	0.176(2)	0.4456(7)	0.485(1)	0.3510(5)	2.20(1)	1.93(1)	1.93(1)	2.51(1)	2.38(1)
Gd	5.7898(1)	23.9556(3)	695.44(1)	1.3(1)	0.4400(1)	1.7(1)	0.3423(1)	1.5(1)	1.7(1)	0.4042(2)	1.9(2)	0.300 (3)	2.7(2)	0.183(2)	0.175(1)	0.4471(6)	0.484(1)	0.3511(5)	2.17(1)	1.93(1)	1.93(1)	2.49(1)	2.41(1)
Tb	5.7508(1)	23.6530(3)	677.44(1)	1.7(1)	0.4417(1)	1.6(1)	0.3441(1)	1.3(1)	2.6(1)	0.4060(3)	1.7(2)	0.3013(3)	2.2(2)	0.181(2)	0.172(1)	0.4490(6)	0.484(1)	0.3524(5)	2.10(1)	1.93(1)	1.94(1)	2.48(1)	2.43(1)
Dy	5.7772(2)	23.8843(6)	690.36(5)	1.3 (1)	0.4408(1)	1.6(1)	0.3427(1)	1.5(1)	2.8(1)	0.4044(3)	1.5 (3)	0.3003(3)	2.7(2)	0.181(2)	0.177(1)	0.4466(6)	0.485(1)	0.3512(5)	2.18(1)	1.92(1)	1.94(1)	2.49(1)	2.40(1)
Но	5.7736(1)	23.8554(4)	688.66(2)	1.7(2)	0.4417(1)	1.7(1)	0.3431(1)	1.4 (1)	4.0(2)	0.4041(3)	0.4(2)	0.2993(3)	2.6(3)	0.187(2)	0.175(2)	0.4442(7)	0.480(1)	0.3502(6)	2.20(1)	1.90(1)	1.89(1)	2.50(1)	2.35(1)
Er	5.7695(1)	23.8303(3)	686.96(2)	1.4 (1)	0.4415(1)	1.6(1)	0.3432(1)	1.6(1)	2.7 (1)	0.4048(3)	1.7 (2)	0.3002(3)	2.5(2)	0.184(2)	0.175(1)	0.4473(6)	0.484(1)	0.3515(5)	2.15(1)	1.92(1)	1.93(1)	2.49(1)	2.39(1)
т	5.7658(1)	23.8029(3)	685.31(1)	1.5(1)	0.4417(1)	1.7(1)	0.3434(1)	1.6(1)	2.0(1)	0.4057(2)	2.2(2)	0.3005(3)	2.4(2)	0.184(2)	0.173(1)	0.4480(5)	0.485(1)	0.3511(5)	2.13(1)	1.94(1)	1.92(1)	2.50(1)	2.40(1)
m																							
Yb	5.7639(2)	23.766 (1)	683.80(7)	1.0 (2)	0.4424(1)	1.3 (1)	0.3440(1)	0.9(1)	1.7(2)	0.4054(3)	0.7(3)	0.2996(4)	2.5(3)	0.183(2)	0.174(2)	0.4474(9)	0.488(2)	0.3508(7)	2.14(1)	1.95(1)	1.94(1)	2.52(1)	2.36(1)
Lu	5.7573(1)	23.7459(3)	681.63(2)	2.7 (1)	0.4423(1)	2.8(1)	0.3440(1)	2.5(1)	2.6(1)	0.4062(2)	2.9(2)	0.3010(2)	3.3(2)	0.188(1)	0.172(1)	0.4490(4)	0.485(1)	0.3508(4)	2.10(1)	1.95(1)	1.90(1)	2.50(1)	2.42(1)

[a] the average bond length

Figure S11. inverse susceptibility χ^{-1} vs. temperature for Ba₅*Ln*_{1-x}Mn_{4+y}O_{15- δ} (a) *Ln*=Tm, Lu, Ho, Gd and Dy at 20 Oe; (b) *Ln* = Er, Tb, Yb, Eu and Sm at 1000 Oe. For clarity, χ^{-1} are scaled by 0.1 for the Sm, Eu and Tm samples, and by 0.01 for the Lu sample.