Supporting Information

Cu-catalyzed aerobic oxidative C-CN bond cleavage of benzyl cyanide for the synthesis of primary amides

Xiuling Chen*, Yanhong Peng, Yan Li, Minghu Wu, Haibing Guo, Jian Wang, Shaofa Sun*

Non-power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Life Science, Hubei University of Science and Technology, Xianning 437100, China [Fax: (+86)-715-8338072; E-mail: cxl828800@163.com (Dr. X. L. Chen) ; sunshaofa@mail.hbust.com.cn (Prof. S. F. Sun).]

Contents

General remarks	2
General procedure	2
Optimization of reaction condition Effect of catalyst loading Effect of solvent	2-3
¹ H and ¹³ C NMR data of products	3-7
References	7
Copies of ¹ H and ¹³ C NMR spectra	8-26

1. General remarks

All non-aqueous reactions and manipulations were performed in air atmosphere. All solvents were dried before use. The reactions were monitored by GC (7820A, Hubei University of Science and Technology) and GC-MS (QP2010, Hunan University). The ¹H NMR and ¹³C NMR spectra were recorded on a Brucker ADVANCE III spectrometer at 400 MHz and 100 MHz, respectively (Hubei University of Science and Technology). Flash column chromatography was performed using silica gel 40-70 μ m (200-300 mu). Benzonitriles and substituted-arylacetonitrile were purchased from Energy Chemical, Alfa Aesar, Aladdin or Maya Reagent; were dried before use. The Cu salts and amines were purchased from Energy Chemical, Aladdin.

2. General procedure

5 mol% Cu salts, 0.2 mmol arylacetonitrile, 0.3 mmol N-source, 0.3 mmol base were dissolved in 2 mL CH₃CN under O_2 atmosphere and stirred at 120 °C in sealed tube (schleck tube which was sealed by a rubber septum). After completion of the reaction, the resulting solution was cooled to room temperature, washed with saturated HCl aqueous solution, and extracted with CHCl₃ three times. The organic layer was dried over anhydrous MgSO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel and eluted with EtOAc/petroleum ether (1/2) to afford the desired product.

ö

la la	CN	(Cu) N base atm, O ₂	NH 2a	¹ 2 + 2 b	Ĭ Į	NH ₂
Entry	Cat	[N]	Base	Solvent	2a% ^c	2b % ^b
1	CuCl	NH ₃ .H ₂ O	-	CH ₃ CN	35	20
2	$Cu(OAc)_2$	NH ₃ .H ₂ O	-	CH ₃ CN	25	30
3	CuO	NH ₃ .H ₂ O	-	CH ₃ CN	40	41
4	CuCl ₂	NH ₃ .H ₂ O	-	CH ₃ CN	50	25
5	Cu ₂ O	NH ₃ .H ₂ O		CH ₃ CN	50	31
6	Cu	NH ₃ .H ₂ O		CH ₃ CN	43	35
7	Cu ₂ O	NH ₄ Cl	Ba(OH) ₂	CH ₃ CN	50	<1
8	Cu ₂ O	NH ₄ Cl	KOH	CH ₃ CN	58	<1
9	Cu ₂ O	NH ₄ Cl	$Ca(OH)_2$	CH ₃ CN	20	<1
10	Cu ₂ O	NH ₄ Cl	NaOH	CH ₃ CN	88	<1
11	CuCl	NH ₄ Cl	NaOH	CH ₂ CN	71	<1

3. Optimization of reaction conditions^a

12	CuCl ₂	NH ₄ Cl	NaOH	CH ₃ CN	65	<1
13	$Cu(OAc)_2$	NH ₄ Cl	NaOH	CH ₃ CN	58	<1
14	CuBr	NH ₄ Cl	NaOH	CH ₃ CN	55	<1
15	CuBr ₂	NH ₄ Cl	NaOH	CH ₃ CN	62	<1
16	Cu	NH ₄ Cl	NaOH	CH ₃ CN	55	<1
17	Cu ₂ O	NH ₄ OAc	NaOH	CH ₃ CN	63	<1
18	Cu ₂ O	$(NH_4)_2SO_4$	NaOH	CH ₃ CN	50	<1
19	Cu ₂ O	$(NH_4)_2CO_3$	NaOH	CH ₃ CN	71	<1
20	Cu ₂ O	Urea	NaOH	CH ₃ CN	<1	<1
21	Cu ₂ O	NH ₄ Cl	-	CH ₃ CN		<1
22	-	NH ₄ Cl	NaOH	CH ₃ CN		<1
23	Cu ₂ O	NH ₄ Cl	NaOH	Toluene	20	<1
24	Cu ₂ O	NH ₄ Cl	NaOH	1,4-dioxane	33	<1
25	Cu ₂ O	NH ₄ Cl	NaOH	THF	36	<1
26	Cu ₂ O	NH ₄ Cl	NaOH	DMF	13	<1
27	Cu ₂ O	NH ₄ Cl	NaOH	DMSO	trace	<1
28	Cu ₂ O	NH ₄ Cl	NaOH	DCE	21	<1
29	Cu ₂ O	NH ₄ Cl	NaOH	C ₂ H ₅ OH	trace	<1
30 ^c	Cu ₂ O	NH ₄ Cl	NaOH	CH ₃ CN	trace	trace

^{*a*}Reaction conditions: 2-phenylacetonitrile **1a** (0.2 mmol), cat (5 mol%), N source (0.3 mmol), base (0.4 mmol), CH₃CN (2 ml), in 25 mL schlenk tube, 120 °C, O₂ (1 atm), 30 h. ^{*b*}Yields were determined by GC using *n*-hexadecane as an internal standard. ^{*c*}Air was used as oxidant.

4. ¹H NMR and ¹³C NMR data of products

benzamide (2a)¹

Following the general procedure (EtOAc/petroleum ether 1:2), **2a** was obtained as a white solid, isolated yield: 82%. ¹H NMR (DMSO-*d*, 400 MHz): δ 8.04 (s, 1H), 7.88 (d, 1H, *J* = 7.6 Hz), 7.50 (d, 2H, *J* = 7.0 Hz), 7.43 (d, 2H, *J* = 7.6 Hz), 7.40 (s, 1H); ¹³C NMR (DMSO-*d*, 100 MHz): δ 168.7, 134.5, 131.8, 128.7, 127.9; GC-MS: m/z=121.

4-methylbenzamide (2b)¹

Following the general procedure (EtOAc/petroleum ether 1:2), **2b** was obtained as a white solid, isolated yield: 81%. ¹H NMR (DMSO-*d*, 400 MHz): δ 7.73 (d, 1H, *J* = 8.0 Hz), 7.26 (d, 2H, *J* = 8.0 Hz), 6.19 (s, 2H), 2.42 (s, 3H); ¹³C NMR (DMSO-*d*, 100 MHz): δ 169.7, 142.6, 129.3, 129.1, 127.4, 21.5; GC-MS: m/z=135.

4-methoxybenzamide (2c)¹

Following the general procedure (EtOAc/petroleum ether 1:2), **2c** was obtained as a white solid, isolated yield: 79%. ¹H NMR (DMSO-*d*, 400 MHz): δ 7.78 (d, 1H, *J* = 8.4 Hz), 6.93 (d, 2H, *J* = 8.4 Hz), 5.94 (br, 2H), 3.85 (s, 3H); ¹³C NMR (DMSO-*d*, 100 MHz): δ 168.9, 162.6, 129.3, 125.6, 113.8, 55.4; GC-MS: m/z=151.

4-fluorobenzamide (2e)¹

F F Following the general procedure (EtOAc/petroleum ether 1:2), **2e** was obtained as a white solid, isolated yield: 81%. ¹H NMR (DMSO-*d*, 400 MHz): δ 8.02 (s, 1H), 7.93-7.97 (m, 2H), 7.42 (s, 1H), 7.26 (t, 2H, J = 8.4 Hz); ¹⁹F NMR (376 MHz, DMSO-*d*): δ - 109.51 (s, F); ¹³C NMR (DMSO-*d*, 100 MHz): δ 167.4, 164.4 (d, J = 146.9 Hz), 131.1 (d, J = 2.9 Hz), 130.4 (d, J = 9.0 Hz), 115.5 (d, J = 21.6 Hz); GC-MS: m/z=139.

4-chlorobenzamid (2f)¹

Following the general procedure (EtOAc/petroleum ether 1:2), **2f** was obtained as a white solid, isolated yield: 78%. ¹H NMR (DMSO-*d*, 400 MHz): δ 8.05 (s, 1H), 7.82 (d, 1H, *J* = 8.4 Hz), 7.65 (d, 2H, *J* = 8.4 Hz), 7.46 (s, 1H); ¹³C NMR (DMSO-*d*, 100 MHz): δ 167.5, 133.9, 131.7, 130.1, 125.5; GC-MS: m/z=155.

4-bromobenzamide (2g)¹

Br Following the general procedure (EtOAc/petroleum ether 1:2), **2g** was obtained as a white solid, isolated yield: 83%. ¹H NMR (DMSO-*d*, 400 MHz): δ 8.04 (s, 1H), 7.81 (d, 1H, *J* = 8.0 Hz), 7.65 (d, 2H, *J* = 8.0 Hz), 7.45 (s, 1H); ¹³C NMR (DMSO-*d*, 100 MHz): δ 167.4, 133.9, 131.7, 130.1, 125.5; GC-MS: m/z=198.

4-iodobenzamide (2h)²

Following the general procedure (EtOAc/petroleum ether 1:2), **2h** was obtained as a white solid, isolated yield: 69%. ¹H NMR (DMSO-*d*, 400 MHz): δ 8.02 (s, 1H), 7.83

(d, 1H, J = 8.4 Hz), 7.65 (d, 2H, J = 8.4 Hz), 7.42 (s, 1H); ¹³C NMR (DMSO-*d*, 100 MHz): δ 167.7, 137.6, 134.2, 129.9, 99.3; GC-MS: m/z=246.

4-(trifluoromethyl)benzamide (2i)¹

F₃C Following the general procedure (EtOAc/petroleum ether 1:2), **2i** was obtained as a white solid, isolated yield: 78%. ¹H NMR (DMSO-*d*, 400 MHz): δ 8.20 (s, 1H), 8.06 (d, 1H, *J* = 8.4 Hz), 7.82 (d, 2H, *J* = 8.0 Hz), 7.63 (s, 1H); ¹⁹F NMR (376 MHz, DMSO-*d*): δ - 61.38 (s, 3F); ¹³C NMR (DMSO-*d*, 100 MHz): δ 167.2, 138.5, 131.6 (d, *J* = 31.8 Hz), 128.8, 125.6 (q, *J* = 3.7 Hz), 123.1; GC-MS: m/z=189.

[1,1'-biphenyl]-4-carboxamide (2j)¹

4-nitrobenzamide (2k)¹

Following the general procedure (EtOAc/petroleum ether 1:2), **2k** was obtained as a white solid, isolated yield: 92%. ¹H NMR (DMSO-*d*, 400 MHz): δ 8.27 (t, 3H, *J* = 8.4 Hz), 8.06 (d, 2H, *J* = 8.4 Hz), 7.71 (s, 1H); ¹³C NMR (DMSO-*d*, 100 MHz): δ 166.9, 149.5, 140.4, 1294, 123.9; GC-MS: m/z=166.

1-naphthamide (2l)¹

O NH₂

Following the general procedure (EtOAc/petroleum ether 1:2), **2I** was obtained as a white solid, isolated yield: 57%. ¹H NMR (DMSO-*d*, 400 MHz): δ 8.49 (s, 1H), 8.14 (s, 1H), 7.97-8.02 (m, 4H), 7.58-7.62 (m, 2H), 7.47 (s, 1H); ¹³C NMR (DMSO-*d*, 100 MHz): δ 168.8, 134.7, 132.6, 131.9, 129.3, 128.3, 128.2, 128.1, 128.0, 127.1, 124.9; GC-MS: m/z=171.

2-naphthamide(2m)¹

Following the general procedure (EtOAc/petroleum ether 1:2), **2m** was obtained as a white solid, isolated yield: 71%. ¹H NMR (DMSO-*d*, 400 MHz): δ 8.46 (d, 1H, *J* = 14.4 Hz), 8.20 (s, 1H), 7.95 (d, 4H, *J* = 14.0 Hz), 7.7 (t, 2H, *J* = 3.2 Hz), 7.49 (s, 1H); ¹³C NMR (DMSO-*d*, 100 MHz): δ 168.4, 134.6, 132.6, 131.9, 129.3, 128.32, 128.29, 128.1, 128.0, 127.2, 124.8; GC-MS: m/z=171.

thiophene-2-carboxamide (2n)¹

Following the general procedure (EtOAc/petroleum ether 1:2), 2n was obtained as a white solid, isolated yield: 63%. ¹H NMR (DMSO-*d*, 400 MHz): δ 7.97 (s, 1H), 7.74 (t, 2H, *J* = 4.2 Hz), 7.38 (s, 1H), 7.13 (t, 1H, *J* = 4.4 Hz); ¹³C NMR (DMSO-*d*, 100 MHz): δ 163.4, 140.8, 131.5, 129.1, 128.4; GC-MS: m/z=127.

Picolinamide (20)¹

O Following the general procedure (EtOAc/petroleum ether 1:2), **20** was obtained as a white solid, isolated yield: 72%. ¹H NMR (DMSO-*d*, 400 MHz): δ 8.62 (d, 1H, *J* = 4.4 Hz), 8.13 (s, 1H), 8.04 (d, 1H, *J* = 7.6 Hz), 7.94 (t, 1H, *J* = 7.6 Hz), 7.66 (s, 1H), 7.58 (t, 1H, *J* = 6.0 Hz); ¹³C NMR (DMSO-*d*, 100 MHz): δ 166.5, 150.7, 148.9, 138.1, 126.9, 122.4; GC-MS: m/z=122.

3-methylbenzamide (2p)¹

NH₂

Following the general procedure (EtOAc/petroleum ether 1:2), **2p** was obtained as a white solid, isolated yield: 71%. ¹H NMR (DMSO-*d*, 400 MHz): δ 7.65 (s, 1H), 7.59 (t, 1H, *J* = 8.4 Hz), 7.29-7.33 (m, 2H), 6.42 (s, 2H); ¹³C NMR (DMSO-*d*, 100 MHz): δ 170.1, 138.5, 133.4, 132.7, 128.5, 128.1, 124.3, 21.3; GC-MS: m/z=135.

2-methylbenzamide (2q)³

Following the general procedure (EtOAc/petroleum ether 1:2), **2q** was obtained as a white solid, isolated yield: 35%. ¹H NMR (DMSO-*d*, 400 MHz): δ 7.74 (s, 1H), 7.29-7.35 (m, 3H), 7.20 (t, 2H, *J* = 8.8 Hz); ¹³C NMR (DMSO-*d*, 100 MHz): δ 172.0, 137.1, 135.6, 131.0, 129.8, 127.4, 126.0, 20.0; GC-MS: m/z=135.

5. References

- 1. S. U. Dighea and S. Batra, Adv. Synth. Catal., 2016, 358, 500-505.
- 2. S. Shimokawa, Y. Kawagoe, K. Moriyama and H. Togo, Org. Lett., 2016, 18, 784-787.
- 3. Y. Wang, K. Yamaguchi and N. Mizuno, Angew. Chem. Int. Ed., 2012, 51, 7250-7253.

6. Copies of ¹H, ¹³C NMR and ¹⁹F NMR spectra

100 90 f1 (ppm)

