Structure and dynamics processes in free-base chlorins controlled by chemical modifications of macroring and aryl groups in meso-positions⁺

J. Śniechowska, P. Paluch, and M. J. Potrzebowski*

Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland

List of contents:

a)	NMR data of obtained compounds	S2
b)	Assignments of chlorin 2	S40
c)	Assignments of chlorin 3	S42
d)	HRMS analysis	S43
e)	Absorption spectroscopy	S49
f)	Cartesian coordinates of all computed structures of pyrrolidine-fused	
	chlorins	S52
g)	NBO analysis	S60

NMR spectra of obtained compounds:

Figure S1 ¹H-NMR spectrum in CDCl₃ of compound 5 recorded in CDCl₃ at 500 MHz.

Figure S2 ¹H-NMR spectrum in CDCl₃ of compound 6 recorded in CDCl₃ at 500 MHz

Figure S 3 ¹H NMR spectrum in DMF-d₇ of compound 17 recorded in DMF-d₇ at 600MHz

Figure S 4 ¹H NMR spectrum in DMF-d₇ of compound **17** (expansion of 9.00-10.00 ppm region) recorded in DMF-d₇ at 600 MHz

Figure S 5 ¹H NMR spectrum in DMF-d₇ of compound **17** (expansion of 7.60-8.50 ppm region) recorded in DMF-d₇ at 600MHz.

Figure S 6 ¹H-¹³C HSQC NMR spectrum in DMF-d₇ of compound **17** recorded in d₇-DMF. The spectrum obtained at 600 MHz spectrometer.

Figure S 7¹³C NMR spectrum in DMF-d₇ of compound 17 at 600 MHz spectrometer.

Figure S 8 ¹³C NMR spectrum in DMF-d₇ of compound **17** (expansion of 159.5-165 ppm region) at 600 MHz spectrometer.

Figure S 9 1 H NMR spectrum in CDCl₃ of compound 18 at 600 MHz.

Figure S 10 ¹H NMR spectrum in CDCl₃ of compound **18** (expansion of 8.75 - 9.20 ppm region) at 600 MHz.

Figure S 11 ¹H NMR spectrum in CDCl₃ of compound **18** (expansion of 7.20 - 7.90 ppm region) at 600 MHz.

Figure S 12 ¹H-¹³C HSQC spectrum in CDCl₃ of compound **18.** The spectrum obtained at 600 MHz spectrometer.

Figure S 13 13 C NMR spectrum in CDCl₃ of compound 18 at 600 MHz spectrometer.

Figure S 14 ¹³C NMR spectrum in CDCl₃ of compound **18** (expansion of 160 - 163 ppm region) at 600 MHz spectrometer.

Figure S 15 ¹³C NMR spectrum in CDCl₃ of compound **18** (expansion of 136 - 147 ppm region) at 600 MHz spectrometer.

Figure S 16 ¹³C NMR spectrum in CDCl₃ of compound **18** (expansion of 117 - 119 ppm region) at 600 MHz spectrometer.

Figure S 17 13 C NMR spectrum in CDCl₃ of compound **18** (expansion of 103.6 – 105.2 ppm region) at 600 MHz spectrometer.

Figure S 18¹H NMR spectrum in CDCl₃ of compound 19 at 600 MHz.

Figure S 19 ¹H-¹³C HSQC NMR spectrum in CDCl₃ of compound **19.** The spectrum obtained at 600 MHz spectrometer.

Figure S 20¹³C NMR spectrum in CDCl₃ of compound 19 at 600 MHz spectrometer.

Figure S 21 ¹³C NMR spectrum in CDCl₃ of compound **19** (expansion of 127 - 149 ppm region) at 600 MHz spectrometer.

Figure S 22¹³C NMR spectrum in CDCl₃ of compound **19** (expansion of 110 - 118 ppm region) at 600 MHz spectrometer.

Figure S 23 ¹H NMR spectrum in CDCl₃ of compound 20 at 600 MHz.

Figure S 24 ¹H NMR spectrum in CDCl₃ of compound **20** (expansion of 8.60 - 9.20 ppm region) at 600 MHz.

Figure S 25 ¹H NMR spectrum in CDCl₃ of compound **20** (expansion of 7.60-8.35 ppm region) at 600 MHz.

Figure S 26 ¹H-¹³C HSQC NMR spectrum in CDCl₃ of compound **20.** The spectrum obtained at 600 MHz spectrometer.

Figure S 27 ¹³C NMR spectrum in CDCl₃ of compound 20 at 600 MHz spectrometer.

Figure S 28¹³C NMR spectrum in CDCl₃ of compound **18** (expansion of 126 - 136 ppm region) at 600 MHz spectrometer.

Figure S 29 13 C NMR spectrum in CDCl₃ of compound **18** (expansion of 138-157 ppm region) at 600 MHz spectrometer.

Figure S 30 ¹H NMR spectrum in CDCl₃ of compound 1 at 600 MHz.

Figure S 31 ¹H NMR spectrum in CDCl₃ of compound **1** (expansion of 7.1-8.9 ppm region) at 600 MHz.

Figure S 32 ¹H NMR spectrum in CDCl₃ of compound **1** (expansion of 2.0- 6.5 ppm region) at 600 MHz.

Figure S 33 ¹H-¹³C HSQC NMR spectrum in CDCl₃ of compound **1.** The spectrum obtained at 600 MHz spectrometer.

Figure S 34 ¹H-¹³C HSQC NMR spectrum in CDCl₃ of compound **1.** The spectrum obtained at 600 MHz spectrometer.

Figure S 35 ¹H-¹³C NMR spectrum in CDCl₃ of compound **1.** The spectrum obtained at 600 MHz spectrometer.

Figure S 36 ¹³C NMR spectrum in CDCl₃ of compound 1 at 600 MHz spectrometer.

Figure S 37 ¹³C NMR spectrum in CDCl₃ of compound **1** (expansion of 160-164 ppm region) at 600 MHz spectrometer.

Figure S 38 ¹³C NMR spectrum in CDCl₃ of compound **1** (expansion of 121-143 ppm region) at 600 MHz spectrometer.

Figure S 39 ¹³C NMR spectrum in CDCl₃ of compound **1** (expansion of 115-119 ppm region) at 600 MHz spectrometer.

Figure S 40 ¹³C NMR spectrum in CDCl₃ of compound **1** (expansion of 108-113 ppm region) at 600 MHz spectrometer.

Figure S 41 ¹H NMR spectrum in CDCl₃ of compound 2 at 600 MHz.

Figure S 42 ¹H NMR spectrum in CDCl₃ of compound **2** (expansion of 8.15-8.86 ppm region) at 600 MHz.

Figure S 43 ¹H NMR spectrum in CDCl₃ of compound **2** (expansion of 7.15-7.80 ppm region) at 600 MHz.

Figure S 44 ¹H NMR spectrum in CDCl₃ of compound **2** (expansion of 2.0-6.0 ppm region) at 600 MHz.

Figure S 45 ¹H-¹³C HSQC NMR spectrum in CDCl₃ of compound **2.** The spectrum obtained at 600 MHz spectrometer.

Figure S 46 ¹H-¹³C HSQC NMR spectrum in CDCl₃ of compound **2.** The spectrum obtained at 600 MHz spectrometer.

Figure S 47 ¹H-¹³C HSQC NMR spectrum in CDCl₃ of compound **2.** The spectrum obtained at 600 MHz spectrometer.

Figure S 48 13 C NMR spectrum in CDCl₃ of compound 2 at 600 MHz spectrometer.

Figure S 49 ¹³C NMR spectrum in CDCl₃ of compound **2** (expansion of 152-166 ppm region) at 600 MHz spectrometer.

Figure S 50 ¹³C NMR spectrum in CDCl₃ of compound **2** (expansion of 120-146 ppm region) at 600 MHz spectrometer.

Figure S 51 ¹³C NMR spectrum in CDCl₃ of compound **2** (expansion of 100-119 ppm region) at 600 MHz spectrometer.

Figure S 52 ¹³C NMR spectrum in CDCl₃ of compound **2** (expansion of 35-70 ppm region) at 600 MHz spectrometer.

Figure S 53 ¹H NMR spectrum in CDCl₃ of compound 3 at 600 MHz.

Figure S 54 ¹H NMR spectrum in CDCl₃ of compound **3** (expansion of 8.10-9.00 ppm region) at 600 MHz.

Figure S 55 ¹H NMR spectrum in CDCl₃ of compound **3** (expansion of 2.0-6.0 ppm region) at 600 MHz.

Figure S 56 ¹H-¹³C HSQC NMR spectrum in CDCl₃ of compound **3.** The spectrum obtained at 600 MHz spectrometer.

Figure S 57 ¹H-¹³C HSQC NMR spectrum in CDCl₃ of compound **3.** The spectrum obtained at 600 MHz spectrometer.

Figure S 58 ¹H-¹³C HSQC NMR spectrum in CDCl₃ of compound **3.** The spectrum obtained at 600 MHz spectrometer.

Figure S 59 ¹³C NMR spectrum in CDCl₃ of compound 3 at 600 MHz spectrometer.

Figure S 60 ¹³C NMR spectrum in CDCl₃ of compound **3** (expansion of 151-165 ppm region) at 600 MHz spectrometer.

Figure S 61 ¹³C NMR spectrum in CDCl₃ of compound **3** (expansion of 135-150 ppm region) at 600 MHz spectrometer.

Figure S 62 ¹³C NMR spectrum in CDCl₃ of compound **3** (expansion of 100-135 ppm region) at 600 MHz spectrometer.

Figure S 63 13 C NMR spectrum in CDCl₃ of compound **3** (expansion of 35-100 ppm region) at 600 MHz spectrometer.

Figure S 64 ¹H NMR spectrum in CDCl₃ of compound 4 at 600 MHz.

Figure S 65 ¹H NMR spectrum in CDCl₃ of compound **4** (expansion of 7.90-8.85 ppm region) at 600 MHz.

Figure S 66 ¹H NMR spectrum in CDCl₃ of compound **4** (expansion of 7.0-7.9 ppm region) at 600 MHz.

Figure S 67 ¹H NMR spectrum in CDCl₃ of compound **4** (expansion of 2.0-6.0 ppm region) at 600 MHz.

Figure S 68 ¹H-¹³C HSQC NMR spectrum in CDCl₃ of compound **4.** The spectrum obtained at 600 MHz spectrometer.

Figure S 69 ¹H-¹³C HSQC NMR spectrum in CDCl₃ of compound **4.** The spectrum obtained at 600 MHz spectrometer.

Figure S 70¹³C NMR spectrum in CDCl₃ of compound 4 at 600 MHz spectrometer.

Figure S 71 ¹³C NMR spectrum in CDCl₃ of compound **4** (expansion of 152-162 ppm region) at 600 MHz spectrometer.

Figure S 72 ¹³C NMR spectrum in CDCl₃ of compound **4** (expansion of 131-143 ppm region) at 600 MHz spectrometer.

Figure S 73 ¹³C NMR spectrum in CDCl₃ of compound **4** (expansion of 121-130 ppm region) at 600 MHz spectrometer.

Figure S 74 ¹³C NMR spectrum in CDCl₃ of compound **4** (expansion of 103-114 ppm region) at 600 MHz spectrometer.

Figure S 75 ¹³C NMR spectrum in CDCl₃ of compound **4** (expansion of 40-69 ppm region) at 600 MHz spectrometer.

Assignments of chlorin 2

Figure S 76 Structure of chlorin 2 with labeling and numeration of atoms

In this case it impossible to use ¹⁹F-¹H correlation based on dipolar coupling. Instead of that we have decided to use ¹⁹F decoupled ¹H-¹H ROESY experiment. In such case after finding H₃, H_{21} , $H_{21'}$ and H_{22} , $H_{22'}$ it was possible to assign protons in β -pyrrolic positions. Proton in o-H_{Aup} position was assigned by looking for correlation with H₂₂ and H_{22'} protons in ¹H-¹H ROESY spectrum. Having in mind o-H_{Aup} correlation it was possible to assign H₇ proton in β -pyrrolic positions. In the analogues way we assign H₁₈ using correlation with o-H_{Dup}. After this we found correlation between H₁₈ and o-H_{Dup}. H₈ and H₁₇ were assigned using ¹H-¹H COSY and theirs correlation with previous assigned H₇ and H₁₈. It were impossible to stereospecific assign of up and down o-proton in B and C position. Both of up/down protons were assigned by looking for correlation with H₈ or H₁₇ for C and B rings respectively in ¹H-¹H ROESY spectrum. H₁₂ and H₁₃ signals were find by looking for correlation with *o*-protons of C or B ring. ¹⁹F signals were assigned based on ¹⁹F-¹H HETCOR (scalar based) correlation. In addition using this experiment protons in para position of phenyl rings were assigned. In this case we did not observe unexpected correlation on the ¹⁹F-¹H HETCOR experiment. It is well understandable, when we considered the closest distance (more than 4A) between ¹⁹F in *meta* position of phenyl ring and β -pyrrolic protons.

Figure S 77 a, b, c) ¹⁹F decoupled ¹H-¹H ROESY (dipolar based) b) ¹H-¹⁹F HETCOR (scalar based) for chlorin **2.** The spectra obtained at 600 MHz spectrometer.

Assignments of chlorin 3

Figure S 78 Structure of chlorin 3 with labeling and numeration of atoms

Because *ortho*, *meta*, *para* fluorine atoms in the *meso*-perfluorinated phenyl ring are well resolved (-136 to -138 ppm, -156 to -162 ppm and -148 to 151 ppm for *o*-, *m*-, *p*-respectively) it is easy to find them. Having in mind characteristic ¹⁹F chemical shifts it is easy to assign this compound in similar manner like chlorin **1** by finding correlation between protons in β -position and *o*-fluorine atoms of perfluorinated phenyl ring. *m*- and *p*- fluorine atoms were assigned using ¹⁹F-¹⁹F COSY correlation.

HRMS analysis

Figure S 79 HRMS spectrum of compound 14

Figure S 80 HRMS spectrum of compound 17

Figure S 81 HRMS spectrum of compound 18

Figure S 82 HRMS spectrum of compound 1

Figure S 83 HRMS spectrum of compound 2

Figure S 84 HRMS spectrum of compound 3

Absorption spectroscopy

Chlorin	Soret band [nm]	Molar absorbance coefficient [dm ³ ·mol ⁻¹ ·cm ⁻¹]
1	408	141 040
2	409	180 726
3	408	120 968
4	411	163 822

 Table S1 Molar absorbance coefficient from experimental data:

Figure S 85 Absorbance vs. concentration calibration curve for chlorin 1

Figure S 86 Absorbance vs. concentration calibration curve for chlorin 2

Figure S 87 Absorbance vs. concentration calibration curve for chlorin 3

Figure S 88 Absorbance vs. concentration calibration curve for chlorin 4

Calculations:

a) Chlorin 1

С	0.07805000	-2.96792200	-0.08074500
Ν	-0.94746000	-2.06478800	-0.03818700
С	-2.16775900	-2.71150900	-0.07047300
С	-3.66259000	-0.71780700	0.03268700
С	0.81744500	2.70176600	-0.04997800
С	2.38896700	0.74811400	-0.09151000
С	-3.42103200	-2.10527000	-0.03016700
Ν	-2.70315000	0.24916200	0.03584400
С	-0.52511900	-4.26743000	-0.15032100
Ν	-0.39413900	2.06836300	-0.00236900
Ν	1.47491900	-0.24830300	-0.04438600
С	2.08523300	-1.45015800	-0.03509900
С	2.10279500	2.11482000	-0.09434100
С	-3.37849700	1.43208000	0.09587300
С	-4.99200100	-0.13351500	0.10007800
С	-1.42307000	2.98929800	0.04442600
С	3.82413600	0.19506200	-0.10354200
С	-1.88332200	-4.11027200	-0.14405300
С	3.59882400	-1.33006300	-0.00224700
С	-2.78880700	2.71031600	0.09935800
С	0.54384100	4.10781800	-0.03557200
С	-0.81190800	4.27983500	0.02364700
С	-4.81445000	1.20917600	0.14184200
С	1.46138300	-2.70066100	-0.06049400
С	3.22180000	3.11564500	-0.14591600
С	3.71076200	3.62682200	-1.35123300
С	3.77883100	3.67851000	1.00485300
С	4.69979000	4.59504500	-1.42966800
С	4.76856500	4.64800400	0.98667400
С	5.23014300	5.10101200	-0.24718100
С	-3.70380900	3.89528600	0.16173000
С	-4.26187900	4.46857900	-0.98227600
С	-4.05998600	4.49798300	1.36931500
С	-5.11637000	5.56051400	-0.95161700
С	-4.90945300	5.59059300	1.45814700
С	-5.43735800	6.11918700	0.28290600
С	-4.60649100	-3.02008800	-0.05668100
С	-5.26245100	-3.35421500	-1.24295300
С	-5.13397600	-3.59317500	1.10182800
C	-6.36493600	-4.19379500	-1.29740600
C	-6.23340100	-4.43850200	1.10537100
C	-6.84765100	-4.73522200	-0.10867800
C	2.33778600	-3.91829400	-0.09289700
C	2.91365400	-4.39270200	-1.27435200
Ċ	2.61103200	-4.67904300	1.04617900
Ċ	3.70843600	-5.52739500	-1.34074800

С	3.39452400	-5.82306400	1.03861000
С	3.94522500	-6.24272000	-0.16989200
С	4.73490100	0.54503700	1.07995900
Ν	5.37382500	-0.72728500	1.40923600
С	4.30851400	-1.71976500	1.31343700
Ν	4.50353800	0.49245900	-1.46708200
0	5.57455000	1.07440900	-1.48171500
0	3.90575900	0.09460300	-2.45255300
С	6.09124800	-0.72374200	2.67211000
F	-4.79693300	-2.83345800	-2.39764500
F	-4.54318200	-3.30699300	2.28174000
F	-3.95221200	3.93158400	-2.18103800
F	-3.55076500	3.98863300	2.51138400
F	3.18530300	3.15642000	-2.49891000
F	2.68231900	-3.70814800	-2.41346400
F	2.08458900	-4.27580000	2.22430400
Н	-0.85658100	-1.05827800	0.00224800
Н	0.01940000	-5.19562000	-0.20172200
Η	-0.53438900	1.06723400	-0.01095500
Н	-5.92450300	-0.67598200	0.11461800
Н	-2.62915900	-4.88733700	-0.18802000
Н	4.05515300	-1.84987000	-0.84323500
Н	1.29292500	4.88103800	-0.06655400
Н	-1.34780600	5.21468900	0.04909000
Η	-5.57431500	1.97306400	0.19602600
Η	5.03859200	4.92944400	-2.40139600
Η	5.15532400	5.03288900	1.92137100
Η	6.00601000	5.85599600	-0.28585300
Η	-5.51211200	5.95264300	-1.87954400
Н	-5.14321300	6.00546200	2.43005900
Н	-6.10315100	6.97245700	0.32937700
Η	-6.82306600	-4.40902100	-2.25406100
Н	-6.58925100	-4.84495200	2.04324000
Η	-7.70826900	-5.39283500	-0.12850400
Η	4.12144600	-5.83230700	-2.29355900
Н	3.56188700	-6.36061400	1.96303200
Н	4.56198400	-7.13277000	-0.19925700
Н	4.10782400	0.91222900	1.90919900
Н	3.60372700	-1.65780700	2.16312600
Η	4.72155700	-2.72910600	1.28705100
Н	6.55687100	-1.69890600	2.83355700
Η	6.88418800	0.02726000	2.64275700
Η	5.43644400	-0.50464200	3.53524700
F	3.31951000	3.26059700	2.20817300
Η	5.47220500	1.30573800	0.83057800

b) Chlorin 2

С	0.08239400	-2.97054900	-0.11526600
Ν	-0.94178400	-2.06671700	-0.02300200
С	-2.16562500	-2.70897100	-0.07084800
С	-3.65469600	-0.71210300	0.08536400
С	0.82997100	2.69795800	-0.06471400
С	2.39465600	0.74026100	-0.03186900
С	-3.42025500	-2.10228400	0.00387700
Ν	-2.69530500	0.25649900	0.03813700
С	-0.52542900	-4.26286700	-0.24228200
Ν	-0.38494200	2.07050100	0.01292300
Ν	1.47904800	-0.25610700	-0.01200600
С	2.08974300	-1.45925600	-0.00760400
С	2.11403800	2.10750500	-0.07383100
С	-3.36718400	1.44132000	0.12724000
С	-4.97663400	-0.12625400	0.23445900
С	-1.41212900	2.99652300	0.01993200
C	3.82855500	0.18972400	0.01319900
C	-1.88381900	-4.10314500	-0.21481400
Ċ	3.60059400	-1.33703100	0.09576200
Ċ	-2.77993000	2.72335700	0.09312000
C	0.56008400	4.10388000	-0.11791000
C	-0.79545400	4.28277100	-0.06698700
C	-4.79718000	1.21712400	0.26070700
C	1.46828400	-2.70956100	-0.08457700
C	3.24531400	3.09928300	-0.15505600
Č	3 75256500	3 48411800	-1 40046100
Č	3 75021400	3 69173100	1 00864600
C	4.76307200	4 43260500	-1.45028000
C	4.76130700	4 63333200	0.89899900
C	5.29505600	5.02870700	-0.31738100
C	-3 69558100	3 91148500	0.12929400
C C	-4 43869300	4 25859400	-1 00454900
C	-3 81179400	4 67713600	1 29468200
C	-5 27637300	5 36144000	-0.94447700
C	-4 66899800	5 76694500	1 29766900
C	-5 41862300	6 14106400	0.19331200
C C	-4 60901700	-3 01570700	-0.00905800
C C	-5 /2969900	-3.08/96200	-0.00705000
C C	-4 90515500	-3.80313700	1 1095/000
C C	-6 52156400	-3.0313700	-1 12516800
C C	6 01315600	-5.55670100	1 06030600
C C	-0.01313000 6.84627700	4 73087400	0.03/31200
C C	-0.84027700	-4.75087400	-0.03431200
C C	2.34723800	-3.92883900	-0.10010300
C	2.27803300	- 1 .20720200	-1.30233200
C	2.52505500	-4.74401000	-1 /0887200
C	3.77+22700 3.33101500	5 867/7200	-1.40002200
C	3.33171300	-J.00/4/J00	0.037/0000
C	3.7/013000	-0.22000000	-0.3133/000

С	4.68929400	0.53155700	1.23846200
Ν	5.29435700	-0.74398800	1.60479100
С	4.23396300	-1.73075600	1.44863500
Ν	4.56551700	0.48408100	-1.31511800
0	5.71005800	0.89203400	-1.28167500
0	3.93146900	0.24499400	-2.33377200
С	5.95318300	-0.74686000	2.89893200
F	-4.78335300	6.50014100	2.42790600
F	-5.98805400	5.69746500	-2.04339200
F	-6.29860700	-5.38925000	2.15501300
F	-7.30782900	-4.00799000	-2.22248500
F	3.50309200	-6.64709200	1.95137900
F	4.37782000	-5.72555300	-2.57280400
F	5.24805600	5.19779600	2.02822900
F	5.25054300	4.79966300	-2.65368300
Η	-0.84594700	-1.06181400	0.03872900
Η	0.01590700	-5.18783200	-0.34817100
Η	-0.52969100	1.07007500	0.03028900
Н	-5.90531200	-0.66757300	0.31948700
Η	-2.63079800	-4.87531800	-0.29651200
Η	4.10861700	-1.85917700	-0.71280300
Н	-1.32807200	5.21894600	-0.09334200
Н	-5.55176800	1.97954300	0.37013400
Н	5.44551300	1.28480100	1.02737600
Η	3.48015000	-1.66426400	2.25667500
Н	4.63867000	-2.74335300	1.44544500
Η	6.40169000	-1.72594300	3.08168700
Н	6.75322900	-0.00321400	2.90670200
Н	5.26049400	-0.52142000	3.73064500
Η	4.02467300	0.91115900	2.03537600
Η	1.31217400	4.87116400	-0.18969100
Η	-3.25589200	4.42844400	2.18928200
Η	-4.36591400	3.68742800	-1.92082800
Η	-6.08015100	6.99632300	0.21773000
Η	3.36075400	3.43701900	1.98563500
Η	3.37767600	3.05223900	-2.31935200
Н	6.08556700	5.76416600	-0.38006700
Η	2.04633100	-4.51432100	1.90653000
Η	4.60170300	-7.10835500	-0.37259200
Н	2.84827000	-3.66714100	-2.25474100
Η	-4.29492400	-3.76378100	2.00241400
Η	-5.22339400	-2.49187600	-2.02198400
Η	-7.70490700	-5.38839900	-0.04413000

c) Chlorin 3

С	0.13718500	-2.98320000	-0.07239400
Ν	-0.86220300	-2.05201700	-0.02650000
С	-2.09923200	-2.66475700	-0.06375100

С	-3.54001000	-0.62877300	0.03468900
С	1.03268200	2.66328300	-0.03981800
С	2.55356100	0.66530700	-0.02598900
С	-3.33390400	-2.02176600	-0.02283200
Ν	-2.55426500	0.31076300	0.03140300
С	-0.50148300	-4.26520900	-0.15228400
Ν	-0.19610000	2.06450200	0.00095800
Ν	1.61103300	-0.30435900	-0.00147000
С	2.18856800	-1.52221800	0.01308200
С	2.30077700	2.03899500	-0.05426800
С	-3.19768600	1.51139900	0.07877800
С	-4.85355700	-0.00824300	0.09615000
С	-1.19831500	3.01461400	0.02362800
С	3.97278600	0.07301300	0.01119400
С	-1.85425300	-4.07075700	-0.14514800
С	3.70343500	-1.44572800	0.08265900
С	-2.57088400	2.77158000	0.06998800
С	0.79897700	4.07684300	-0.04737900
С	-0.55129400	4.28768200	-0.00706100
С	-4.63959200	1.32879000	0.12502600
С	1.52686100	-2.75277100	-0.03837100
С	3.44824300	3.00738800	-0.11433300
С	3.92772400	3.48921000	-1.33400900
С	4.02563600	3.53890000	1.03932600
С	4.95162200	4.42571900	-1.41032600
С	5.05302300	4.47260800	0.99255300
С	5.51950400	4.91461200	-0.24015400
С	-3.45459600	3.98196200	0.10909100
С	-3.99416700	4.52872400	-1.05513000
С	-3.77937700	4.60686700	1.31284600
С	-4.82276000	5.64488200	-1.03029900
С	-4.60504500	5.72416300	1.36483000
С	-5.12847300	6.24378100	0.18645700
С	-4.54502200	-2.90373100	-0.04336200
С	-5.20942700	-3.20123200	-1.23322200
С	-5.06187400	-3.45896300	1.12717300
С	-6.33844500	-4.01199300	-1.26470300
С	-6.18892600	-4.27288400	1.12271100
С	-6.82883300	-4.54933800	-0.08001300
С	2.36927800	-3.99448900	-0.08429400
C	2.92993400	-4.45001100	-1.27896900
С	2.60333100	-4.76836800	1.05308100
С	3.69185700	-5.61133300	-1.34536900
C	3.35837000	-5.93479600	1.01494000
Ċ	3.90542200	-6.35674000	-0.19146700
C	4.84165200	0.38117600	1.23778900
N	5.44724200	-0.90792300	1.55704000
С	4.36800900	-1.87713900	1.40987100
Ν	4.71432900	0.37757100	-1.31770600
0	5.77181700	0.98208500	-1.28014300

0	4.16831800	-0.02613300	-2.33015400
С	6.13424500	-0.94643000	2.83783700
F	-4.76050700	-2.70166800	-2.39110300
F	-4.47048900	-3.20924600	2.30248200
F	-3.71696800	3.97655000	-2.24257700
F	-3.29269600	4.12935900	2.46549200
F	3.58058400	3.15788500	2.24754500
F	3.39312500	3.04927200	-2.47744000
F	2.73637300	-3.76091300	-2.40954400
F	2.09462200	-4.39027200	2.23460100
F	-4.89901500	6.29907000	2.53402800
F	-5.92129400	7.31437600	0.22324000
F	-5.32385000	6.14531700	-2.16244400
F	-6.65984300	-4.78891100	2.26104300
F	-7.90959600	-5.32889900	-0.09739400
F	-6.95138000	-4.28012100	-2.42049200
F	3.56472000	-6.64850100	2.12539800
F	4.63164700	-7.47258400	-0.24149700
F	4.21260700	-6.01804000	-2.50491900
F	5.58850900	4.95211100	2.11947300
F	6.50396200	5.81015900	-0.29781100
F	5.39154700	4.85719000	-2.59301200
Η	-0.74315800	-1.04863800	0.01875600
Н	0.01365100	-5.20956600	-0.20914300
Η	-0.36518400	1.06779400	0.00223000
Н	-5.80224300	-0.52147600	0.11526800
Η	-2.61889000	-4.82887600	-0.19484300
Η	4.16536100	-1.96227800	-0.75730500
Η	-1.05760200	5.23910900	-0.00010500
Н	-5.38090100	2.11104500	0.17167600
Η	5.60119900	1.13382700	1.03447400
Η	3.64067800	-1.82168400	2.24080000
Η	4.76592200	-2.89238700	1.37340800
Η	6.57725800	-1.93357700	2.98720300
Η	6.94178400	-0.21113800	2.84381000
Η	5.46250400	-0.73391800	3.68853900
Η	4.18922000	0.74073500	2.05119900
Η	1.56740400	4.83070400	-0.07780700

d) Chlorin 4

С	-0.01030400	-2.96339300	-0.12697300
Ν	-1.04586200	-2.07199300	-0.03345800
С	-2.26282800	-2.72848700	-0.07893400
С	-3.77273500	-0.75030400	0.08718400
С	0.67141300	2.71519200	-0.08856500
С	2.25569400	0.77682200	-0.08338500
С	-3.52603600	-2.13899700	0.00109400
Ν	-2.82564100	0.23060100	0.03241100

С	-0.60313300	-4.26262300	-0.25133100
Ν	-0.53578900	2.07302100	-0.00105800
Ν	1.35224200	-0.23084100	-0.04835300
С	1.97588700	-1.42760500	-0.04063200
С	1.96389600	2.14204000	-0.11114600
С	-3.50981300	1.40807800	0.13247900
С	-5.09915000	-0.18002000	0.25251300
С	-1.57546100	2.98583500	0.01007800
С	3.69620700	0.24199300	-0.06602000
С	-1.96396100	-4.11885300	-0.22332000
С	3.48598500	-1.28550400	0.04883200
С	-2.94072300	2.69912000	0.09504500
С	0.38295700	4.11703900	-0.14467600
С	-0.97508800	4.27885600	-0.08611700
С	-4.93505600	1.16597100	0.28168400
С	1.37345600	-2.68792200	-0.10251100
С	3.08450700	3.14619800	-0.18085800
С	3.54510700	3.78033900	0.98050000
С	3.63774800	3.51875000	-1.41108500
С	4.54796200	4.74534200	0.91651200
С	4.64225900	4.48312400	-1.47680500
С	5.10152700	5.09727400	-0.31399200
С	-3.86886800	3.87618900	0.14127900
С	-4.65223400	4.20889400	-0.97065000
С	-3.96904800	4.66389100	1.29428700
С	-5.51284400	5.30437900	-0.93144800
С	-4.83383800	5.75641900	1.33608400
С	-5.60703300	6.08063800	0.22262800
С	-4.70401800	-3.06518100	-0.01068400
С	-5.54416800	-3.13387100	-1.12902400
С	-4.98811700	-3.87773500	1.09385300
С	-6.63918100	-3.99563000	-1.14358300
С	-6.08669700	-4.73570100	1.08211800
С	-6.91463600	-4.79808100	-0.03734400
С	2.26821100	-3.89604700	-0.16891000
С	2.91303000	-4.24128900	-1.36318500
С	2.45861000	-4.71176300	0.95322500
С	3.73522300	-5.36499800	-1.43077800
С	3.27879900	-5.83730300	0.88746900
С	3.92177700	-6.16566600	-0.30489300
С	4.58663000	0.61637600	1.12765500
Ν	5.19673000	-0.65034900	1.52145000
С	4.13511200	-1.64253700	1.40333000
Ν	4.39697600	0.51074900	-1.41895200
0	5.55787500	0.87353300	-1.42442400
0	3.72585800	0.28870700	-2.41784700
С	5.86539100	-0.61678300	2.80881300
Н	-0.96228800	-1.06576900	0.02490200
Н	-0.04814300	-5.17948200	-0.35782100
Н	-0.66711100	1.07075900	0.01742100

Η	-6.01887900	-0.73492500	0.34751700
Η	-2.70372600	-4.89798400	-0.30504900
Η	3.99559300	-1.82044400	-0.75020500
Η	1.12664200	4.89153600	-0.22672600
Η	-1.52214500	5.20661500	-0.11506300
Η	-5.69522200	1.92088800	0.40400800
Η	3.10708200	3.51980000	1.93781400
Η	3.28106300	3.04780500	-2.31992500
Η	4.89352400	5.22442800	1.82597800
Η	5.06584000	4.75067300	-2.43810400
Η	5.88360000	5.84642400	-0.36532600
Η	-4.58008700	3.60742100	-1.86979600
Η	-3.37184600	4.41180400	2.16347100
Η	-6.10818900	5.55162800	-1.80339900
Η	-4.90443300	6.35206800	2.23947600
Η	-6.27813300	6.93161000	0.25397200
Η	-5.33212900	-2.51158900	-1.99107500
Η	-4.34957200	-3.82686900	1.96869500
Η	-7.27596200	-4.04069200	-2.02013200
Η	-6.29646700	-5.35248100	1.94900900
Η	-7.76838400	-5.46629400	-0.04752300
Η	2.76270600	-3.62763500	-2.24494800
Η	1.95921100	-4.46031400	1.88263100
Η	4.22537200	-5.61676300	-2.36464800
Η	3.41540400	-6.45609600	1.76753400
Η	4.56087300	-7.03986100	-0.35737000
Η	5.33915700	1.36146400	0.87737500
Η	3.94189900	1.02216200	1.92714500
Η	3.39030700	-1.55481100	2.21778400
Η	4.53915100	-2.65528800	1.42093300
Η	6.31642900	-1.59010800	3.01599900
Η	6.66470500	0.12785900	2.79013100
Н	5.17918900	-0.36857500	3.64032700

NBO analysis

Figure S 89 Chlorin 1

Figure S 90 Chlorin 2

Figure S 91 Chlorin 3

Figure S 92 Chlorin 4