Supporting Information

Analysis of partially sulfonated low density polyethylene (LDPE)

membranes as separators in microbial fuel cells

Vikash Kumar^a, Ruchira Rudra^b, Arpita Nandy^b, Subrata Hait^{a*}, Patit P. Kundu^{b*}

^a Department of Civil and Environmental Engineering, Indian Institute of Technology, Patna (Bihar), India.

^b Advanced Polymer Laboratory, Department of Polymer Science and Technology, University of Calcutta, India.

Figure S2: Cell performances at different resistances.

Figure S3: Polarization curve of SPE-30 fitted MFC with O_2 purging at cathode.

Figure S4: Schematic illustration representing the proton conductivity measurement of membranes.

Sample Name	Melt onset Temp (°C)	Melt peak Temp (°C)	Enthalpy(J/g) [ΔH _f]	% Crystallinity
Pure LDPE	97.84	112.11	155.834	53.166
SPE-7	97.66	112.41	105.13	35.87
SPE-15	97.54	112.77	83.217	28.4
SPE-30	96.20	111.31	66.26	22.6
SPE-45	104.30	112.13	96.98	33.6
SPE-1 hr	105.1	112.45	143.47	48

 Table 1(T1): Differential Scanning Calorimetry (DSC) analysis of membranes.

Table 2 (T2): A comparative study of MFCs in terms of power generation using different membranes

MFC Type	Electrodes	Used Membranes	Maximum	<u>References</u>
			Power density	
Dual chamber	Composite electrodes (Stainless steel and Graphite)	Nafion 112	1.5 mWm ⁻²	1
Air cathode MFC	Carbon papers	Nafion 117	239.4 mWm ⁻²	2
Air cathode MFC	Carbon papers	SPEEK/PES	70 mWm ⁻²	3
Dual chamber	Graphite Plates	Fe3O4/PES nanocomposite	20 mWm ⁻²	4
Dual chamber	Graphite Rods	Sulfonated polyethylene/poly(styrene- co-divinyl benzene)	44.1 mWm ⁻²	5
Air cathode MFC	Carbon cloths	Sulfonated polyethylene (as MEA)	$86.7 \pm 5 \text{ mWm}^{-2}$	Present study

References:

- 1. Godwin JM, Evitts RW, Kennell GF. Microbial fuel cell with a polypyrrole/poly(methylene blue) composite electrode. Reports in electrochemistry 2012; 2:3.
- 2. Lu N, Zhou SG, Zhuang L, Zhang JT, Ni JR. Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem Eng J 2009; 43:246–51.
- 3. Lim, S. S.; Daud, W. R. W.; Md Jahim, J.; Ghasemi, M.; Chong, P. S.; Ismail, M. Sulfonated Poly(ether Ether Ketone)/poly(ether Sulfone) Composite Membranes as an Alternative Proton Exchange Membrane in Microbial Fuel Cells. *International Journal of Hydrogen Energy* 2012, *37*, 11409–11424.

- 4. Rahimnejad, M.; Ghasemi, M.; Najafpour, G. D.; Ismail, M.; Mohammad, A. W.; Ghoreyshi, A. A.; Hassan, S. H. A. Synthesis, Characterization and Application Studies of Self-made Fe3O4/PES Nanocomposite Membranes in Microbial Fuel Cell. *Electrochimica Acta* **2012**, *85*, 700–706.
- 5. Grzebyk, M.; Poźniak, G. Microbial Fuel Cells (MFCs) with Interpolymer Cation Exchange Membranes. *Separation and Purification Technology* **2005**, *41*, 321–32.

 Table 3(T3): Cost comparison of membranes

Membranes	Costs (USD)
Nafion	~1.8-2.3\$/cm ²
AEMs(e.g., AMI 7001)	~1.2-1.6\$/cm ²
CEMs(e.g., CMI 7000)	~0.6-1.2\$/cm ²
Sulfonated LDPE membranes	~0.1-0.3\$/100cm ²

Figure S5: Membrane electrode assembly (MEA) in single chambered MFCs

Abbreviation/symbol

Description

batch	Batch/fed-batch mode operation/process
continuous	Continuous flow mode process
t _{total}	Total experimetal duration
t _{max}	Day of maximum performance
A _{an}	Projected surface area of the anode
A _{cat}	Projected surface area of the cathode
A _{mem}	Projected surface area of the membrane
ESA	Electrode surface area (projected)
V	Total reactor volume
V _{an}	Total anolyte volume
V _{cat}	Total catholyte volume
С	Substrate/product conentration
C _{in} /COD _{in}	Influent substrate/COD concentration
C _{out} /COD _{out}	Effluent substarte/COD concentration
ΔC Or ΔCOD	Substrate concentration change (Initial-final)
M	molar mass of the compound
Ag/AgCl	Silver/Silver chloride reference electrode
SHE	Standard hydrogen electrode (reference electrode)
E _{an}	Anode potential
E _{cat}	Cathode potential
E _{cell}	Cell voltage
OCP	Open circuit potnetial
I	Maximum current for batch process
I _{steady state}	Steady state current for continuous process
R _{int}	Internal resitance
R _{ext}	External resistance
J _{ESA}	Electrode surface based current density
j _{vol}	Volumetric current density (w.r.t. V _{an} /V _{cat} /V)
Р	Power
ε _c	Coulombic efficiency
∫l*dt	Charge - Integration of current and time
F	Faraday's constant
b _{es}	Difference in degree of reduction between substrate and product
VFR _{influent}	Volummetric influent flow rate to the anode/cathode chamber
HRT	Hydraulic retention time of anolyte/catholyte for continuous process
Ms/Mp	Moles of substrate used/product produced
$\Delta n_{\text{product/substarte}}$	Moles of product produced/substarte used

Q _{total}	Theoretical charge
Q _{product(S)}	Charge recovered in the product(s)
ε _E	Energetic efficiency
$\Delta Gf_{product}$	Energy content of product
ΔGf _{substrate} ΔH ∫Ecell*I*dt	Energy content of substrate Heat of combustion of the compound Power produced over time t
P _{vol}	Volumetric production rate (for product(s))
P _{ESA} Ep1 Ep2	Electrode surface based production rate (for product(s)) Energy content product 1 Energy content product 2

Potential (in mV) of the routinely used reference electrodes vs SHE (at 25 °C)					
			Г (\ /) · иа		
RE type	E (mV)_Experimental	E (mV) vs SHE	SHE		
Ag/AgCl (0.1 M KCl)	0	288	0.288		
Ag/AgCl (3.5 M KCl)	0	205	0.205		
Ag/AgCl (sat. KCl)	0	199	0.199	Used in the experiment	
Ag/AgCl (3 M NaCl)	0	209	0.209		
Ag/AgCl (sat. NaCl)	0	197	0.197		
Ag/AgCl (seawater)	0	250	0.25		
SCE (0.1 M KCl)	0	336	0.336		
SCE (1 M KCl)	0	280	0.28		
SCE (3.5 M KCl)	0	250	0.25		
SCE (sat. KCl)	0	244	0.244		
SCE (sat. NaCl)	0	236	0.236		

Microbial fuel cells (MFCs)

COD value: 1800±240 mg l-1

mg

Green represents the system values

Red and **Blue** marked are not applicable here

Mixed substrate to electricity		(total nitroger I–1, PO4–P: 33 MgSO4:48 mg	: 114±27 m ±6 mg l–1, l–1).
Units		Data and calculations	
m ²	HARACTERISTICS	0.0006	
m²		0.0006	
m²		0.0025 Electricity	
m ³		0.00015	
m ³		0.00015	
L		0.15	
m³ L/d		NIL 0.1	
	<i>V_{an}</i> /feed rate; for example for		
d m	anolyte	1.5 0	
	Mixed sub Units SYSTEM C m ² m ² m ³ L m ³ L/d	Formula SYSTEM CHARACTERISTICS m ² m ² m ² m ³ m ³ L m ³ L/d Main L/d Van/feed rate; for example for anolyte m	Mixed substrate to electricityData and calculationsUnitsFormulaData and calculationsSYSTEM CHARACTERISTICS0.0006m²0.0006m²0.0005m³0.00015m³0.00015L0.15m³NILL/d0.15m³NILL/d0.15m³NILJ0.15m³NILJ0.15m³NILJ0.15m³NILJ0.15m³NILJ0.15m³NILJ0.15m³NILJ0.15m³NILJ0.15m³NILJ0.15JJ </td

and cathode

MEASURED PARAMETERS

Anode potential (E _{an})	V vs referenc e V vs	Ag/AgCl	-0.3	
Cathode potential (E _{cat})	referenc e V vs referenc	Ag/AgCl	1	
Cell voltage (E _{cell})	e V vs	Ag/AgCl	0.24	
Open circuit potnetial <i>(OCP)</i>	referenc e	Ag/AgCl		Note: For calculating charge (O)
Maximum oxidation current <i>(I)</i> for batch	А	as recorded	0.000213	consider EITHER average current over the total batch cycle (t_{total}) OR area under the current curve i.e., Integration of I x t relationship for t_{total}
Sateri			0.000213	Note: For calculaiting charge (Q), consider EITHER average current
Steady state current (I _{steady} _{state}) for				over the total batch cycle (t _{total}) OR area under the current curve i.e., Integration of I x t
continuous Total experimental duration/days of current	A	as recorded	0.0036	relationship for t _{total}
generation (t_{total})	days		7	
resitance (R _{int})	Ω		1	
resistance (R _{ext})	Ω		1	
influent COD (COD_{in})/Initial substrate conentration (C_{in}) Effluent COD (COD_{out})/Final substrate	g/L		1.8	
(C _{out})	g/L		0.21	

Wastewater			
treatment		((COD _{in} -	
efficiecny/COD		COD _{out})/COD _{in})*10	88.3333333
removal	%	0	3
		(COD _{in} *feed	
Organic loading		rate)/Anolyte	
rate	g _{COD} /L.d	volume	1.2

CALCULATED PARAMETERS

Anode potential		as calculated from	
<i>(E_{an})</i> Cathode	V vs SHE	tab sheet as calculated from	-0.1
potential (E _{cat})	V vs SHE	tab sheet	1.2
Cell voltage (E _{cell}) Open circuit	V vs SHE	tab sheet as calculated from	1.6
potential (OCP) Surface based current density (isse: w.r.t. A)	V vs SHE	tab sheet	
for batch Volumetric current density (J _{Vol} w.r.t. V _{an}) for	A/m²	I/A _{an}	0.355
batch Volumetric current density (J _{vol} w.r.t. V; toal reactor volume)	A/m³	I/V _{an}	1.42
for batch Surface based current density (<i>j</i> ESA; w.r.t. A _{on})	A/m ³	I/V	1.42
for continuous Volumetric current density (J _{vol} w.r.t. V _{an}) for	A/m ²	Isteady state/Aan	6
continuous Volumetric current density (J _{vol} w.r.t. V; toal reactor volume)	A/m ³	Isteady state/Van	24
for continuous	A/m ³	I _{steady state} /V	24

Note: where the system is operated with "working electrode" counter electrode potential is only valid when measured with second

-0.1 reference electrode

Power (P) for batch/continuou			
S	W	E _{cell} *I or I _{staedy state}	0.00005112
Power density			
(w.r.t. A _{an}) for			
batch/continous	W/m²	P/A _{an}	0.0852
Power density			
(w.r.t. A _{cat)} for			
batch/continous	W/m²	P/A _{cat}	0.0852
Volummetric			
power density			
(w.r.t. <i>V; total</i>			
reactor volume)			
for			
batch/continuos	W/m³	P/V	0.3408