Electronic Supplementary Information for Ionic liquid assisted hydrothermal synthesis of MoS₂ double-shell

polyhedral cages with enhanced catalytic hydrogenation activities

Jiahe Li^{a,b}, Donge Wang^a, Huaijun Ma^a, Min Li^{a,b}, Zhendong Pan^a, Yuxia Jiang^{a,b},

Zhijian Tian^{a,c,*}

^a Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics,

Chinese Academy of Sciences, Dalian 116023, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

^c State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese

Academy of Sciences, Dalian 116023, China

* Corresponding author:

Tel: 86-411-84379151, Fax: 86-411-84379151

Email address: tianz@dicp.ac.cn

Figure S1 XRD patterns of (a) as-synthesized MoS_2 double-shell polyhedral cages sample and (b) calcined MoS_2 double-shell polyhedral cages sample at 350°C under H₂ atmosphere for 2h.

Figure S2 SEM images of calcined MoS_2 double-shell polyhedral cages sample at 350°C under H₂ atmosphere for 2h.

Figure S3 XRD patterns of (a) precursor MS-t-1 and (b) hydrothermal products of PMA and ILs after reaction for 1 h.

Figure S4 SEM images of MoS₂ products synthesized using (a) thioacetamide

 (CH_3CSNH_2) , (b) thiourea $(CS (NH_2)_2)$ and (c) elemental sulfur (S) as sulfur sources.

Figure S5 Selectivity and conversion of anthracene hydrogenation reaction using MoS_2 singleshell polyhedral cages MS-ILs-3.5 and double-shell polyhedral cages MS-PCs as catalysts. Reaction conditions: T = 350 °C, P_{H2} = 8 MPa, t = 4 h, 2.5 wt. % Cat.

Figure S6 SEM images of (a) MS-com, (b) MS-NPs and (c) MS-PCs after anthracene hydrogenation reaction (Reaction conditions: T = 350 °C, PH2 = 8 MPa, t = 4 h).

After anthracene hydrogenation reaction, MS-Com was composed of micro-sized MoS₂ layers, MS-NPs were aggregates of nanoparticles and MS-PCs showed morphology of polyhedral cages, showing no obvious change of morphology. Thus the structural stability of as-synthesized MoS₂ samples was very well.