Electronic Supplementary Information

Gold micromeshes as highly active electrocatalysts for methanol oxidation reaction

Jingying Sun,^a Feng Wang, ^a Yuan Liu, ^a Yizhou Ni, ^a Haiqing Zhou, ^a Chuan Fei Guo^{*b}, and Shuo Chen^{*a}

a. Department of Physics & The Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, United States. E-mail: schen34@uh.edu

b. Department of Materials Science & Engineering, South University of Science & Technology of China, Shenzhen, Guangdong 518055, China. E-mail: guocf@sustc.edu.cn

J.S., and F.W. contributed equally

Fig. S1 SEM images and corresponding EDS mapping (insets) results of (a) PMMA template (map of C), (b) Am-1, (c) Am-1.5, and (d) Am-2 (maps of Au).

Fig. S2 (a) Electrochemical performances of sample Am-1 in 0.5 M KOH of different methanol concentration. (b) Curve of oxidation peaks vs. methanol concentrations. (c) Electrochemical performances of sample Am-1 in 0.5 M KOH and 1 M CH₃OH solution with different scan rates. (d) Curve of oxidation peaks vs. scan rates.

Fig. S3 (a)Electrochemical performances of sample Am-1 in 1 M methanol with different KOH concentrations. (b)Curve of oxidation peaks vs. KOH concentrations.

Fig. S4 XPS measurements of a continuous Au film, Am-1, Am-1.5, and Am-2.

Fig. S5 Surface atomic structure of Au micromeshes samples. Typical HRTEM images and FFT of (a) Am-1, (b) Am-1.5., and (c) Am-2 samples.

Fig. S6 Morphology change of Au micromeshes after cycling. (a), (b) TEM images of surface facets, and defects of sample Am-1 after 500 cycles. Pore and ligament sizes of sample Am-1 (c) before and (d) after 500 cycles.

Catalyst	MOR peak	MOR	MOR	Scan	Electrolyte	Reference
	current	peak	onset	rate		
	density	potential	potential	(mV/s)		
	(except	(V vs	(V vs			
	background	RHE)	RHE) (to			
	current)		0.01			
	(mA/cm ²)		mA/cm²)			
Au	0.264	1.26	0.85	20 mV/s	0.5 M KOH	This work
micromeshes/PDMS					+ 1 M	
					СН ₃ ОН	
Trisoctahedron Au	0.139	1.33	0.925	20 mV/s	0.5 M KOH	1
nanocrystals					+ 1 M	
					СН ₃ ОН	
Hollow nanoporous	0.112	1.27	0.966	20 mV/s	0.5 M KOH	2
Au nanoparticles					+ 1 M	
					СН ₃ ОН	
Nanoporous Au	0.081	1.30	0.870	20 mV/s	0.5 M KOH	3
					+ 1 M	
					СН ₃ ОН	
Nanoporous Au	0.025	1.35	1.19	10 mV/s	0.1 M KOH +	4
freestanding films					1 M CH ₃ OH	
Au dendrite	0.062	1.30	1.07	10 mV/s	0.1 M KOH +	5
					1 M CH ₃ OH	
Polycrystalline Au	0.035	1.33	1.157	10 mV/s	0.1 M KOH +	5
					1 M CH ₃ OH	
Dealloyed	0.182	1.29	0.94	5 mV/s	0.5 M KOH	6
nanosponge Au					+ 1 M	
particles					СН ₃ ОН	

Table S1. Comparison of electro-oxidation activity among Au nanostructures.

References

- 1. Y. Song, T. Miao, P. Zhang, C. Bi, H. Xia, D. Wang and X. Tao, *Nanoscale*, 2015, **7**, 8405-8415.
- 2. S. Pedireddy, H. K. Lee, W. W. Tjiu, I. Y. Phang, H. R. Tan, S. Q. Chua, C. Troadec and X. Y. Ling, *Nat. Commun.*, 2014, **5**, 4947.
- 3. J. Zhang, P. Liu, H. Ma and Y. Ding, J. Phys. Chem. C, 2007, **111**, 10382-10388.
- 4. H. Xia, Y. Ran, H. Z. Li, X. Tao and D. Wang, *J. Mater. Chem. A*, 2013, **1**, 4678.
- 5. Y. Qin, Y. Song, N. Sun, N. Zhao, M. Li and L. Qi, *Chem. Mater.*, 2008, **20**, 3965–3972.
- 6. G. G. Li, Y. Lin and H. Wang, *Nano Lett.*, 2016, **16**, 7248-7253.