Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Enzymatic synthesis of electrospinnable poly(butylene succinate-co-dilinoleic

succinate) thermoplastic elastomer

Águeda Sonseca¹, Miroslawa El Fray^{1*}

¹Division of Biomaterials and Microbiological Technologies, Polymer Institute, West Pomeranian

University of Technology, 45 Piastów Ave. 70-311, Szczecin, Poland

Dimer diols or dimeric fatty alcohols are formed by reduction of the terminal groups of the corresponding dimer fatty acid. PRIPOL 2033 is a high purity dimer linoleic diol, fully hydrogenated and distilled aliphatic dimer alcohol with purity of 96.5 %. It has to be taken into account that as in the commercial dimeric fatty acids from CRODA, in the case of the dimeric fatty alcohols, their main structure is a mixture of linear (acyclic) and cyclic dimer alcohols and their isomers, that contains in a small amount some impurities as trimers, oligomers, unsaturations or unreacted monomers.^{1,2} Some possible structures are shown in **Figure S1**. Chemical structure of PRIPOL 2033 was verified by ¹H NMR and ¹³C NMR and peaks were assigned to one of the most common structures. The results are presented in **Figures S2** and **S3** respectively.

Figure S1. Some possible structures of PRIPOL 2033 dimeric fatty alcohol.

Regarding the ¹H NMR (**Figure S2**), the singlet at $\delta^{1}H = 1.70$ ppm (exchangeable with D₂O) is due to the hydroxyl end groups. Resonances at $\delta^{1}H = 1.49$ -1.61 ppm (f, g) correspond to the tertiary carbon protons and the methylene units attached to the –CH₂OH group. The triplet at $\delta^{1}H$ = 3.63 ppm (h) is due to the methylene units attached to the –OH terminal group. Resonances at $\delta^{1}H = 1.26$ ppm (b, c, d, e, j) correspond to methylene protons attached to the methyl group and the rest of methylene protons, and resonances at $\delta^{1}H = 0.83$ -0.87 ppm (a) correspond to methyl protons. The resonances in the interval of $\delta^{1}H = 6.7$ -7 ppm can be related with the presence of aromatic protons which is in agreement with the appearance of the signal at $\delta^{1}H = 2.54$ ppm referred to a methylene protons adjacent to an aromatic moiety, and with the fact that no peaks were detected in the region of $\delta^{1}H = 5-6$ ppm where unsaturation in aliphatic chains are having place.

Figure S2. Top; ¹H NMR of PRIPOL 2033 in CDCl₃. Bottom; ¹H NMR of PRIPOL 2033 in CDCl₃ with one drop of D₂O.

Regarding the ¹³C NMR (**Figure S3**), the peak at $\delta^{13}C = 14.15$ ppm is due to the $-CH_3$, $\delta^{13}C = 22.71$ ppm is due to the CH_2 -CH₃, $\delta^{13}C = 25.77$ ppm is due to the $-CH_2$ -CH₂-CH₂-OH, $\delta^{13}C = 29.39-29.72$ ppm is due to the $-CH_2$ -, $\delta^{13}C = 30.18$ ppm is due to the $-CH_2$ - attached to the tertiary carbons, $\delta^{13}C = 31.95$ ppm is due to the $-CH_2$ -CH₂-CH₃, $\delta^{13}C = 32.81$ ppm is due to the $-CH_2$ -CH₂-OH, $\delta^{13}C = 37.4$ ppm is due to the tertiary carbons, and $\delta^{13}C = 63.02$ ppm is due to the $-CH_2$ -OH. In agreement with the ¹H NMR, the signals at $\delta^{13}C = 26.71$, $\delta^{13}C = 33.69$ ppm and $\delta^{13}C = 37.12$ ppm can be related with the presence of aliphatic chains linked to a cyclic aliphatic structures or aromatic rings and the resonances at $\delta^{13}C = 19.74$ ppm can be related to methyl carbons different from the ones from the end groups. In addition, the signal at $\delta^{13}C = 37.12$ ppm can be related with the presence of an aromatic carbon in agreement with the observations from ¹H NMR.

It should be pointed out that high spectrum amplitude for ¹H NMR and ¹³C NMR was employed to observe the protons and the carbons not present in the main structure proposed since they represent only a small portion of the total dimer structures present in the PRIPOL 2033.

Figure S3. ¹³C NMR of PRIPOL 2033 in CDCl₃.

Figure S4. ¹³C NMR of the poly(butylene succinate-co-dilinoleic succinate) 70:30 copolymer.

Figure S5. ¹³C NMR of the poly(butylene succinate-co-dilinoleic succinate) 70:30 copolymer. Regions from 22.5-33.0 ppm and 61.4-67.0 ppm.

Figure S6. DSC thermograms of bulk and electrospun PBS:DLS 70:30 copolymer. Second heating (a) and cooling (b).

References

- 1. A. Piegat, PhD thesis, West Pomeranian University of Technology Szczecin, 2010.
- 2 J. Skrobot, PhD thesis, West Pomeranian University of Technology Szczecin, 2014.