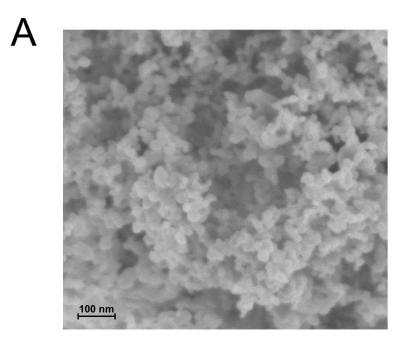
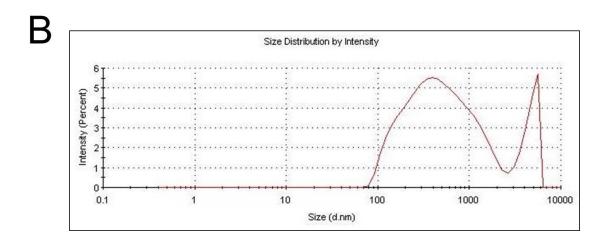
Electronic Supplementary Information

A Green, Facile, and Rapid Method for Microextraction and Raman Detection of Titanium Dioxide Nanoparticles from Milk Powder

Bin Zhao,^a Xiaoqiong Cao,^a Roberto De La Torre-Roche,^c Chen Tan,^a Tianxi Yang,^a Jason C. White,^c Hang Xiao,^a Baoshan Xing,^b and Lili He^{a,*}


a Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States


b Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States

c Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States

*Corresponding author

Email: lilihe@foodsci.umass.edu; Tel: +1 413 545 5847.

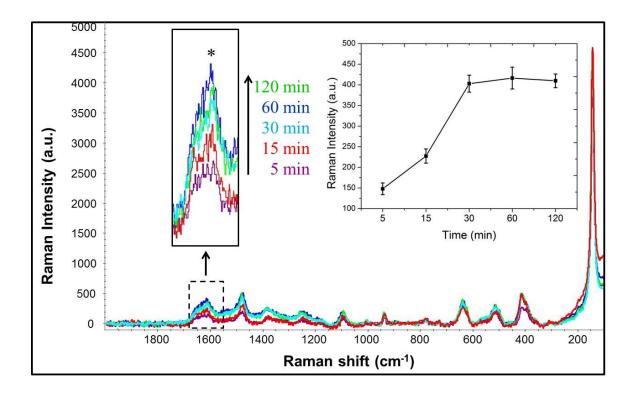


Fig. S1 (A) SEM image of 21 nm TiO_2 nanopowder. (B) Size distribution data of TiO_2 NPs aqueous suspension.

Fig. S2 The dependence of SERS signals on the concentration of MYC adsorbed on TiO₂ NPs. Inset: Plot of SERS intensity of MYC at 1615 cm⁻¹ corresponding to various MYC concentration.

Fig. S3 The dependence of SERS signals on the incubation time of MYC adsorbed on TiO_2 NPs. The concentration of MYC was 500 μ M. Inset: Plot of SERS intensity of MYC at 1615 cm⁻¹ corresponding to various incubation time.

Fig. S4 Photograph of TiO₂ NPs without MYC treatment after 30 min phase separation.