Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting information

Palladium Catalyzed Suzuki Crossing-coupling of Benzyltrimethylammonium Salts via C-N Bond Cleavage

Tao Wang, ^{a,b} Shuwu Yang,^b Silin Xu,^b Chunyu Han,^b Ge Guo,^b Junfeng Zhao*,^{a,b}

^aNational Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, Jiangxi Province, Nanchang 330022, Jiangxi, P. R. China
^bCollege of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022,

Jiangxi, P. R. China

E-mail: zhaojf@jxnu.edu.cn

Contents

General Information	.2
Synthesis of Benzyl Ammonium Salts	.2
Cross-Coupling of Benzyl Ammonium Triflates to Give Diarylmethanes	.2
Applications of Suzuki crossing coupling	.3
Reference	.3
Characterization of products:	.4
NMR Spectra	10

General Information

Reactions were performed in a N₂-atmosphere in oven-dried glassware unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. All the reactions were monitored by thin-layer chromatography (TLC); products purification was done using silica gel column chromatography. ¹H/¹³C NMR spectra were recorded on Bruker avance 400 MHz and Bruker AMX 400 MHz spectrometer at 400/100 MHz, respectively, in CDCl₃ unless otherwise stated, using either TMS or the undeuterated solvent residual signal as the reference. Chemical shifts are given in ppm and are measured relative to CDCl₃ or DMSO-d₆ as an internal standard. Mass spectra were obtained by the electrospray ionization time-of-flight (ESI-TOF) mass spectrometry. GC yields were obtained using naphthalene as an internal standard. Flash column chromatography purification of compounds was carried out by gradient elution using ethyl acetate (EA) in light petroleum ether (PE).

Synthesis of Benzyl Ammonium Salts:

Dimethyl benzyl amines were prepared via reductive amination of the corresponding benzaldehydes. Benzylic ammonium triflates were synthesized according to the procedures reported in the literature.¹ N,N-Dimethylbenzylamine (2.0 mmol, 1.0 equiv) was dissolved in Et₂O (6 mL). MeOTf (2.6 mmol, 1.3 equiv) was added dropwise at 0 °C. White precipitate formed immediately. After complete addition, the reaction mixture was stirred for 2 h at room temperature. The precipitate was isolated by filtration and washed with Et₂O. The resulting solid was dried under vacuum to give the product as a white solid.

Cross-Coupling of Benzyl Ammonium Triflates to Give Diarylmethanes

General Procedure:

Ammonium triflate (0.2 mmol, 1equiv), $PdCl_2$ (1.1 mg, 0.006 mmol), PPh_3 (5.3 mg, 0.02 mmol), boronic acid (2 equiv) and Na_2CO_3 (2 equiv) were combined in a sealed tube equipped with a magnetic stirrer bar under a nitrogen atmosphere. Then, EtOH (3 mL) were added to the tube through a syringe. The mixture was stirred for 18-24 h at 100 °C. The reaction mixture was then diluted with Et₂O (1.5 mL) and filtered through a plug of silica gel, which was rinsed with Et₂O (10 mL). The filtrate was

concentrated and then purified by silica gel chromatography to give the diarylmethane product.

Applications of Suzuki crossing coupling²

To a 25-mL Schlenk tube equipped with a magnetic bar was added NiCl₂(dppp) (0.01 mmol, 0.5 mg), aryl halides (0.1 mmol), aryboronic acids (0.2 mmol), and anhydrous K₃PO₄ (0.4 mmol).The tube was then evacuated (3×10 min) under vacuum and backfilled with N₂. Dried dioxane (1.0 mL) was injected *via* syringe, and the reaction mixture was stirred at 100–110 °C until the aryl halides had disappeared as monitored by TLC. The reaction mixture was poured into water (5 mL) and then extracted with CH₂Cl₂ (10 mL × 3). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated to dryness. The crude material was purified by flash chromatography on silica gel using a mixture of hexane and CH₂Cl₂ (or hexane and ethyl acetate) as eluents to give the desired cross-coupled products.

Reference

(1) Maity, P.; Shacklady-McAtee, D. M.; Yap, G. P.; Sirianni, E. R.; Watson, M. P. J. Am. Chem. Soc. **2013**, *135*, 280.

(2) Zhao, Y.-L.; Li, Y.; Li, S.-M.; Zhou, Y.-G.; Sun, F.-Y.; Gao, L.-X.; Han, F.-S. *Adv. Syn. & Cat.* **2011**, *353*, 1543.

Characterization of products:

4-benzylbenzonitrile(3a)

Colorless liquid; yield 98% (37.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.2 Hz, 2H), 7.29 – 7.10 (m, 5H), 7.07 (d, J = 7.0 Hz, 2H), 3.94 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 146.3, 138.9, 131.8, 129.2, 128.5, 128.3, 126.2, 118.5, 109.6, 41.5. HRMS (ESI⁺) calculated for C₁₄H₁₁N [M+H]⁺: 194.0970; found: 194.0969.

4-(2-methylbenzyl)benzonitrile (3b)

Yellow liquid; yield 98% (40.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 8.2 Hz, 2H), 7.23 – 7.15 (m, 5H), 7.10 – 7.06 (m, 1H), 4.03 (s, 2H), 2.19 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 146.2, 137.2, 136.6, 132.3, 130.6, 130.1, 129.4, 127.1, 126.3, 119.1, 109.9, 39.6, 19.7.HRMS (ESI⁺) calculated for C₁₅H₁₃N [M+H]⁺: 208.1126; found: 208.1122.

4-(3-methylbenzyl)benzonitrile (3c)

Yellow liquid; yield 99% (41.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.1 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.19 (t, *J* = 7.5 Hz, 1H), 7.04 (d, *J* = 7.5 Hz, 1H), 6.95 (d, *J* = 8.6 Hz, 2H), 3.97 (s, 2H), 2.31 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 146.9, 139.3, 138.5, 132.3, 129.8, 129.7, 128.7, 127.5, 126.0, 119.1, 110.0, 42.0, 21.4. HRMS (ESI⁺) calculated for C₁₅H₁₃N [M+H]⁺: 208.1126; found: 208.1122.

4-(4-methylbenzyl)benzonitrile (3d)

Yellow liquid; yield 99% (41.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 8.1 Hz, 2H), 7.18 (d, *J* = 8.1 Hz, 2H), 7.03 (d, *J* = 7.8 Hz, 2H), 6.96 (d, *J* = 7.9 Hz, 2H), 3.89 (s, 2H), 2.23 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 147.1, 136.3, 136.3, 132.3, 129.6, 129.5, 128.9, 119.1, 110.0, 41.6, 21.1. HRMS (ESI⁺) calculated for C₁₅H₁₃N [M+H]⁺: 208.1126; found: 208.1121.

4-(3-methoxybenzyl)benzonitrile (3e)

Yellow liquid; yield 99% (44.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.1 Hz, 2H), 7.27 (d, *J* = 8.1 Hz, 2H), 7.22 (t, *J* = 7.9 Hz, 1H), 6.82 – 6.71 (m, 2H), 6.69 (s, 1H), 3.99 (s, 2H), 3.76 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 146.6, 140.9, 132.3, 129.8, 129.7, 121.4, 119.0, 115.0,

111.8, 110.1, 55.2, 42.0. **HRMS (ESI**⁺) calculated for $C_{15}H_{13}NO [M+Na]^+$: 246.0895; found: 246.0891.

4-(4-methoxybenzyl)benzonitrile (3f)

Yellow liquid; yield 98% (43.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 7.7 Hz, 2H), 7.17 (d, *J* = 7.8 Hz, 2H), 6.98 (d, *J* = 8.2 Hz, 2H), 6.76 (d, *J* = 8.1 Hz, 2H), 3.88 (s, 2H), 3.70 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 158.4, 147.3, 132.3, 131.4, 123.0, 129.5, 119.1, 114.2, 109.9, 55.3, 41.1.HRMS (ESI⁺) calculated for C₁₅H₁₃NO [M+H]⁺: 224.1075; found: 224.1078.

4-(4-fluorobenzyl)benzonitrile (3g)

Light yellow liquid; yield 95% (40.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.6 Hz, 2H), 7.26 (d, *J* = 7.8 Hz, 2H), 7.15 – 7.07 (m, 2H), 6.99 (t, *J* = 8.3 Hz, 2H), 4.00 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 161.7 (d, *J*_{C-F}=244.5Hz), 146.5, 135.0 (d, *J*_{C-F}=3.3Hz), 132.4, 130.4(d, *J*_{C-F}=7.9Hz), 129.6, 118.9, 115.6(d, *J*_{C-F}=21.4Hz), 110.2, 41.1.HRMS (ESI⁺) calculated for C₁₄H₁₀FN [M+H]⁺: 212.0876; found: 212.0880.

4-(4-chlorobenzyl)benzonitrile (3h)

White solid; yield 89% (40.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.2 Hz, 2H), 7.22-7.29 (m, 4H), 7.08 (d, J = 7.4 Hz, 2H), 4.00 (s, 2H).¹³C NMR (100 MHz, CDCl₃) δ 146.1, 137.8, 132.6, 132.4, 130.3, 129.6, 128.9, 118.9, 110.3, 41.3. HRMS (ESI⁺) calculated for C₁₄H₁₀ClN [M+H]⁺: 228.0580; found: 228.0575.

4-(4-(trifluoromethyl)benzyl)benzonitrile (3i)

Yellow solid; yield 83% (43.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.58 (t, *J* = 8.3 Hz, 4H), 7.28 (d, *J* = 7.9 Hz, 4H), 4.09 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 145.5,143.4,132.5,129.7,129.3,128.9,125.7(q, *J*_{C-F}=3.78 Hz), 124.1(q, *J*_{C-F}=272.4 Hz), 118.8, 110.5, 41.7.HRMS (ESI⁺) calculated for C₁₅H₁₀F₃N [M+H]⁺: 262.0844; found: 262.0846.

tert-butyl 4-(4-cyanobenzyl)benzoate (3j)

White solid; yield 91% (53.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.0 Hz, 2H), 7.55 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 4.06 (s, 2H), 1.57 (s, 9H).¹³C NMR (100 MHz, CDCl₃) δ 165.5, 146.0, 144.0, 132.4, 130.6,

130.0, 129.7, 128.9, 118.9, 110.3, 81.0, 41.9, 28.2. **HRMS (ESI**⁺) calculated for $C_{19}H_{19}NO_2 [M+Na]^+$: 316.1313; found: 316.1317.

4-(naphthalen-2-ylmethyl)benzonitrile (3k)

White solid; yield 86% (41.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.74 (m, 3H), 7.60 (s, 1H), 7.56 (d, J = 8.1 Hz, 2H), 7.50 – 7.40 (m, 2H), 7.31 (d, J = 8.1 Hz, 2H), 7.25 (d, J = 6.9 Hz, 1H), 4.18 (s, 2H).¹³C NMR (100 MHz, CDCl₃) δ 146.6, 136.8, 133.6, 132.4, 132.3, 129.8, 128.5, 127.7, 127.6, 127.4, 127.3, 126.3, 125.8, 119.0, 110.2, 42.1. HRMS (ESI⁺) calculated for C₁₈H₁₃N [M+Na]⁺ 266.0946; found: 266.0944. **4-(2,6-dimethylbenzyl)benzonitrile (3aa)**

Yellow liquid; yield 57% (25.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 8.3 Hz, 2H), 7.15 – 7.04 (m, 5H), 4.10 (s, 2H), 2.20 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 137.0, 135.2, 132.3, 128.6, 128.4, 126.9, 119.0, 109.8, 35.2, 20.2. HRMS (ESI⁺) calculated for C₁₆H₁₅N [M+H]⁺: 222.1283; found: 222.1280.

4-([1,1'-biphenyl]-4-ylmethyl)benzonitrile (3ab)

White solid; yield 92% (49.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.50 (m, 6H), 7.42 (t, J = 7.4 Hz, 2H), 7.32 (dd, J = 12.1, 7.7 Hz, 3H), 7.22 (d, J = 7.7 Hz, 2H), 4.06 (s, 2H).¹³C NMR (100 MHz, CDCl₃) δ 146.7, 140.7, 139.7, 138.4, 132.4, 129.7, 129.4, 128.8, 127.5, 127.3, 127.0, 119.0, 110.2, 41.6. HRMS (ESI⁺) calculated for C₂₀H₁₅N [M+H]⁺: 270.1283; found: 270.1277.

4-(naphthalen-1-ylmethyl)benzonitrile (3ac)

White solid; yield 95% (48.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (ddd, J = 14.5, 11.2, 5.1 Hz, 3H), 7.51 (d, J = 8.3 Hz, 2H), 7.49 – 7.40 (m, 3H), 7.26 (dd, J = 13.5, 7.6 Hz, 3H), 4.46 (s, 2H).¹³C NMR (100 MHz, CDCl₃) δ 146.4, 134.9, 134.1, 132.3, 131.9, 129.4, 128.9, 127.9, 127.7, 126.4, 125.9, 125.6, 123.9, 119.0, 110.1, 39.2. HRMS (ESI⁺) calculated for C₁₈H₁₃N [M+H]⁺: 244.1126; found: 244.1122.

4-((benzo[d][1,3]dioxol-5-yl)methyl)benzonitrile (3ad)

White solid; yield 93% (44.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 7.6 Hz, 2H), 7.26 (d, *J* = 7.6 Hz, 2H), 6.74 (d, *J* = 7.7 Hz, 1H), 6.62 (d, *J* = 10.6 Hz, 2H), 5.92 (s, 2H), 3.93 (s, 2H).¹³C NMR (100 MHz, CDCl₃) δ 148.0, 146.9, 146.4, 133.1, 132.3, 129.5, 122.0, 119.0, 110.1, 109.4, 108.4, 101.1, 41.7. HRMS (ESI⁺) calculated for C_{15H11}NO₂ [M+H]⁺: 238.0868; found: 238.0871.

4-(2-methoxybenzyl)benzonitrile (3ae)

White solid; yield 95% (42.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 7.8 Hz, 2H), 7.23 (d, *J* = 7.3 Hz, 1H), 7.08 (d, *J* = 7.0 Hz, 1H), 6.89 (dd, *J* = 15.4, 7.8 Hz, 2H), 4.00 (s, 2H), 3.78 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 157.3, 145.0, 132.1, 130.5, 129.6, 128.2, 127.9, 120.7, 119.3, 110.6, 109.6, 55.3, 36.4. HRMS (ESI⁺) calculated for C₁₅H₁₃NO [M+H]⁺: 224.1075; found: 224.1077.

4-(4-(dimethylamino)benzyl)benzonitrile (3af)

White solid; yield 78% (36.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.0 Hz, 2H), 7.26 (d, *J* = 7.8 Hz, 2H), 7.02 (d, *J* = 8.3 Hz, 2H), 6.68 (d, *J* = 8.4 Hz, 2H), 3.92 (s, 2H), 2.91 (s, 6H).¹³C NMR (100 MHz, CDCl₃) δ 149.4, 147.9, 132.2, 129.7, 129.5, 127.2, 119.2, 112.9, 109.7, 41.1, 40.7. HRMS (ESI⁺) calculated for C₁₆H₁₆N₂ [M+H]⁺: 237.1392; found: 237.1386.

tert-butyl (4-(4-cyanobenzyl)phenyl)carbamate (3ag)

White solid; yield 76% (46.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 7.8 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 7.07 (d, *J* = 8.2 Hz, 2H), 6.56 (s, 1H), 3.96 (s, 2H), 1.51 (s, 9H).¹³C NMR (100 MHz, CDCl₃) δ 152.8, 147.0, 137.0, 133.9, 132.3, 129.6, 129.5, 119.1, 119.0, 109.9, 80.6, 41.3, 28.4. HRMS (ESI⁺) calculated for C₁₉H₂₀N₂O₂ [M+H]⁺: 309.1603; found: 309.1598.

4-(3-nitrobenzyl)benzonitrile (3ah)

White solid; yield 53% (25.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.16 – 8.07 (m, 1H), 8.05 (s, 1H), 7.62 (d, J = 8.3 Hz, 2H), 7.51 (dd, J = 4.3, 1.2 Hz, 2H), 7.31 (d, J = 8.3 Hz, 2H), 4.15 (s, 2H).¹³C NMR (100 MHz, CDCl₃) δ 148.6, 144.8, 141.4, 135.1, 132.7, 129.8, 129.7, 123.8, 121.9, 118.7, 110.8, 41.4. HRMS (ESI⁺) calculated for C₁₄H₁₀N₂O₂ [M+H]⁺: 239.0821; found: 239.0827.

4-(4-formylbenzyl)benzonitrile (3ai)

Yellow solid; yield 89% (37.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.99 (s, 1H), 7.83 (d, J = 7.8 Hz, 2H), 7.59 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 7.8 Hz, 2H), 7.29 (d, J = 7.9 Hz, 2H), 4.12 (s, 2H).¹³C NMR (100 MHz, CDCl₃) δ 191.8, 146.4, 145.3, 135.1, 132.5, 130.2, 129.7, 129.6, 118.8, 110.6, 42.0. HRMS (ESI⁺) calculated for C₁₅H₁₁NO [M+H]⁺: 222.0919; found: 222.0920.

ethyl 4-(4-cyanobenzyl)benzoate (3aj)

White solid; yield 91% (48.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.0 Hz, 2H), 7.58 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 7.9 Hz, 2H), 7.23 (d, J = 7.9 Hz, 2H), 4.37 (q, J = 7.1 Hz, 2H), 4.08 (s, 2H), 1.38 (t, J = 7.1 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 166.3, 145.8, 144.5, 132.4, 130.1, 129.7, 129.0, 129.0, 118.9, 110.4, 61.0, 41.9, 14.4. HRMS (ESI⁺) calculated for C₁₇H₁₅NO₂ [M+H]⁺: 266.1181; found: 266.1176.

4-(pyridin-3-ylmethyl)benzonitrile (3ak)

Yellow liquid; yield 89% (34.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 2H), 7.59 (d, J = 7.6 Hz, 2H), 7.46 (d, J = 7.7 Hz, 1H), 7.35 – 7.20 (m, 3H), 4.05 (s, 2H).¹³C NMR (100 MHz, CDCl₃) δ 150.1, 148.2, 145.3, 136.4, 134.9, 132.5, 129.6, 123.7, 118.7, 110.6, 39.1. HRMS (ESI⁺) calculated for C₁₃H₁₀N₂ [M+H]⁺: 195.0922; found: 195.0919.

4-(furan-3-ylmethyl)benzonitrile (3al)

Yellow liquid; yield 60% (22 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 8.3 Hz, 2H), 7.38 (t, *J* = 1.6 Hz, 1H), 7.31 (d, *J* = 8.4 Hz, 2H), 7.25 – 7.22 (m, 1H), 6.21 (d, *J* = 0.8 Hz, 1H), 3.83 (s, 2H).¹³C NMR (100 MHz, CDCl₃) δ 146.0, 143.5, 139.9, 132.3, 129.4, 122.6, 119.0, 111.0, 110.2, 31.3. HRMS (ESI⁺) calculated for C₁₂H₉NO [M+H]⁺: 184.0762; found: 184.0768.

4-(thiophen-3-ylmethyl)benzonitrile (3am)

Yellow liquid; yield 83% (33 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 8.2 Hz, 2H), 7.28 (dd, J = 7.8, 4.6 Hz, 3H), 6.94 (d, J = 1.7 Hz, 1H), 6.87 (dd, J = 4.9, 1.1 Hz, 1H), 4.03 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 146.2, 139.5, 132.4, 129.5, 128.2,

126.3, 122.0, 119.0, 112.0, 36.6. **HRMS** (**ESI**⁺) calculated for $C_{13}H_{10}N_2$ [M+H]⁺: 200.0534; found: 200.0531.

4-(4-vinylbenzyl)benzonitrile (3an)

Yellow solid; yield 92% (40.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 8.0 Hz, 2H), 7.35 (d, J = 7.9 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 7.9 Hz, 2H), 6.68 (dd, J = 17.6, 10.9 Hz, 1H), 5.71 (d, J = 17.6 Hz, 1H), 5.22 (d, J = 10.9 Hz, 1H), 4.00 (s, 2H).¹³C NMR (100 MHz, CDCl₃) δ 146.7, 139.0, 136.4, 136.1, 132.3, 129.6, 129.2, 126.6, 119.0, 113.8, 110.1, 41.7.HRMS (ESI⁺) calculated for C₁₆H₁₃N [M+H]⁺: 220.1126; found: 220.1121.

4-cinnamylbenzonitrile (3ao)

Yellow solid; yield 95% (41.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.3 Hz, 2H), 7.33 (ddd, J = 9.7, 5.4, 0.9 Hz, 5H), 7.26 – 7.20 (m, 2H), 6.47 (d, J = 14.9 Hz, 1H), 6.29 (dt, J = 15.7, 6.9 Hz, 1H), 3.59 (d, J = 7.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 145.9, 137.0, 132.5, 132.4, 129.5, 128.6, 127.6, 127.2, 126.2, 119.1, 110.2, 39.3.

4-((4'-methyl-[1,1'-biphenyl]-4-yl)methyl)benzonitrile (3ap)

White solid; yield 83% (23.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 8.2 Hz, 2H), 7.52 (d, J = 8.2 Hz, 2H), 7.46 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 7.24 (d, J = 8.6 Hz, 2H), 7.20 (d, J = 8.2 Hz, 2H), 4.05 (s, 2H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.7, 139.6, 138.1, 137.8, 137.1, 132.4, 129.7, 129.5, 129.3, 127.3, 126.9, 119.0, 110.1, 41.6, 21.1.

4-((4'-methoxy-[1,1'-biphenyl]-4-yl)methyl)benzonitrile (3aq)

White solid; yield 56% (16.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 8.2 Hz, 2H), 7.52 – 7.47 (m, 4H), 7.31 (d, J = 8.2 Hz, 2H), 7.19 (d, J = 8.2 Hz, 2H), 6.96 (d, J = 8.7 Hz, 2H), 4.05 (s, 2H), 3.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 146.8, 139.3, 137.8, 133.2, 132.4, 129.7, 129.4, 128.0, 127.1, 119.0, 114.3, 110.1, 55.4, 41.6.

NMR Spectra

¹³C NMR Spectrum of Compound 3a

¹³C NMR Spectrum of Compound 3b

¹³C NMR Spectrum of Compound 3c

¹³C NMR Spectrum of Compound 3d

¹³C NMR Spectrum of Compound 3e

¹³C NMR Spectrum of Compound 3f

0 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

¹³C NMR Spectrum of Compound 3g

¹H NMR Spectrum of Compound 3h

¹³C NMR Spectrum of Compound 3h

¹³C NMR Spectrum of Compound 3i

¹H NMR Spectrum of Compound 3j

¹³C NMR Spectrum of Compound 3j

7, 234 7, 738 7, 777 7, 778 7, 777 7, 778 7, 777 7, 778 7, 777 7, 778 7, 777 7, 778 7, 777 7, 778 7, 777 7, 778 7, 777 7, 778 7, 777 7, 778 7, 777 7, 778 7, 777 7, 778 7, 777 7, 778 7, 777 7, 778 7, 777 7, 778 7, 777 7, 778 7, 777 7, 778 7, 777 7, 778 7, 778 7, 748 7,

-4.175

¹³C NMR Spectrum of Compound 3k

¹H NMR Spectrum of Compound 3aa

¹³C NMR Spectrum of Compound 3aa

¹H NMR Spectrum of Compound 3ab

¹³C NMR Spectrum of Compound 3ab

¹H NMR Spectrum of Compound 3ac

¹³C NMR Spectrum of Compound 3ac

¹³C NMR Spectrum of Compound 3ad

¹³C NMR Spectrum of Compound 3ae

¹³C NMR Spectrum of Compound 3af

¹³C NMR Spectrum of Compound 3ag

¹H NMR Spectrum of Compound 3ah

¹³C NMR Spectrum of Compound 3ah

¹³C NMR Spectrum of Compound 3ai

¹H NMR Spectrum of Compound 3aj

¹³C NMR Spectrum of Compound 3aj

¹³C NMR Spectrum of Compound 3ak

¹³C NMR Spectrum of Compound 3al

¹³C NMR Spectrum of Compound 3am

¹³C NMR Spectrum of Compound 3an

¹³C NMR Spectrum of Compound 3ao

¹³C NMR Spectrum of Compound 3ap

¹³C NMR Spectrum of Compound 3ap