Electronic Supplementary information

Voltage-stabilised elastomers with increased relative permittivity and high electrical breakdown strength by means of phase separating binary copolymer blends of silicone elastomers

Aliff Hisyam A Razak^{1,2}, Liyun Yu¹ and Anne Ladegaard Skov^{1*}

¹ Danish Polymer Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 227, 2800 Kgs. Lyngby, Denmark.

² Faculty of Engineering Technology, University of Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.

* al@kt.dtu.dk; phone +45 45252825; fax +45 45882258; http://www.dpc.kt.dtu.dk/

1) Calculation of engineering stress and strain

The engineering stress (σ_E) was calculated from the force (*F*) and the cross-sectional area of the strip (*A*):

$$\sigma_E = \frac{F}{A} = \frac{F}{t \times w} = \frac{\tau \cdot d}{t \cdot w}$$
 Equation 1

where A = film thickness (t) \cdot constant width (w = 6 mm) and F = torque (τ) \cdot drum diameter (d = 10.3 mm).

The engineering strain (ϵ_E) was calculated as a ratio of a stretched strain ($L - L_0$) to an initial strain (L_0) as:

 $\epsilon_{E} = \frac{L - L_{0}}{L_{0}}$ Equation 2

where a final strain after stretching (L) was determined from Hencky strain (ϵ_{H}) as follows:

 $\epsilon_{H} = ln \frac{L}{L_{0}}$ Equation 3

 $L = L_0 e^{\epsilon_H} = L_0 e^{(r_H \cdot t_s)}$ Equation 4

where ϵ_H is a product of Hencky rate ($r_H = 1 \times 10^{-3}$ rotation/s) and step time (t_s).

By putting equation (4) in (2), the final expression of engineering strain (ϵ_E) was obtained as below:

 $\epsilon_E = e^{\epsilon_H} - 1$ Equation 5

Young's moduli were determined from slopes in the linear regime of stress-strain plots at 5 % strain.

2) NMR spectra of synthesised copolymers

The NMR spectra for synthesised PDMS-PPMS and PDMS-PEG copolymers are shown in Figures S1– S5.

a) PDMS-PPMS copolymer (**80DMS_2PMS**, ${}^{C_{C_{6}H_{6}}}$ = 8.4 · 10⁻⁴ mol g⁻¹) ¹H-NMR (CDCl₃, 300 MHz): δ -0.02 - δ 0.6 (m, 6 H's, -SiO(CH₃)₂-), δ 4.70 (m, 1 H, -SiH-), δ 7.10 - δ 7.60 (m, 5 H's, -SiC₆H₅-).

Figure S1 The NMR for 80DMS_2PMS.

b) PDMS-PEG copolymer (PDMS81-PEG)

¹H-NMR (CDCl₃, 300 MHz): δ 0.05 - δ 0.09 (m, 6 H's, -Si(CH₃)₂O-), δ 3.50 - δ 3.70 (m, 4 H's, -C₂H₄O-), δ 0.98 - δ 1.03 (t, 2 H's, -SiCH₂-), δ 3.53 - δ 3.57 (m, 2 H's, -CCH₂O-).

Figure S2 The NMR for PDMS81-PEG.

c) PDMS-PEG copolymer (PDMS14-PEG)

¹H-NMR (CDCl₃, 300 MHz): δ 0.05 - δ 0.09 (m, 6 H's, -Si(CH₃)₂O-), δ 3.50 - δ 3.70 (m, 4 H's, -C₂H₄O-), δ 0.98 - δ 1.03 (t, 2 H's, -SiCH₂-), δ 3.53 - δ 3.57 (m, 2 H's, -CCH₂O-).

Figure S3 The NMR for PDMS14-PEG.

d) PDMS-PEG copolymer (PDMS7-PEG)

¹H-NMR (CDCl₃, 300 MHz): δ 0.05 - δ 0.09 (m, 6 H's, -Si(CH₃)₂O-), δ 3.50 - δ 3.70 (m, 4 H's, -C₂H₄O-), δ 0.98 - δ 1.03 (t, 2 H's, -SiCH₂-), δ 3.53 - δ 3.57 (m, 2 H's, -CCH₂O-).

Figure S4 The NMR for PDMS7-PEG.

e) PDMS-PEG copolymer (PDMS3-PEG)

¹H-NMR (CDCl₃, 300 MHz): δ 0.05 - δ 0.09 (m, 6 H's, -Si(CH₃)₂O-), δ 3.50 - δ 3.70 (m, 4 H's, -C₂H₄O-), δ 0.98 - δ 1.03 (t, 2 H's, -SiCH₂-), δ 3.53 - δ 3.57 (m, 2 H's, -CCH₂O-).

Figure S5 The NMR for PDMS3-PEG.

3) SEM images

Figure S6 SEM images cross-linked BCBs with: **a**) 10 phr PDMS81-PEG, **b**) 20 phr PDMS81-PEG, **c**) 10 phr PDMS14-PEG, **d**) 20 phr PDMS14-PEG, **e**) 10 phr PDMS7-PEG, **f**) 10 phr PDMS3-PEG, and **g**) 20 phr PDMS3-PEG.