Electronic Supplementary Information (ESI)

Nitrogen-doped-carbon-coated SnO₂ nanoparticles derived from

SnO₂@MOF composite as lithium ion battery anode material

Fengcai Li,‡^a Jia Du,‡^a Hao Yang,^a Wei Shi^{*ab} and Peng Cheng^{*abc}

^a Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Nankai University, Tianjin 300071, China.

^b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.

^c State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.

E-mail: shiwei@nankai.edu.cn (WS); pcheng@nankai.edu.cn (PC)

Contents of ESI

Fig. S1	SEM images of initial SnO_2 nanoparticles (a), calcination product of SnO_2	S2		
	nanoparticles at 800 °C (b), SOZ-1 (c), SOZ-2(d) and SOZ-3 (e).			
Fig. S2	TGA curves of the precursors.	S 3		
Fig. S3	PXRD of SOC-1 (a) and SOC-2 (b).	S4		
Fig. S4	Raman spectra of SnO_2 in initial status (a) and in SOC-3(b)			
Fig. S5	Raman spectra of SOC-1 (a) and SOC-2 (b).	S6		
Fig. S6	TGA curves of (a) SOC-1, (b) SOC-2 and (c) SOC-3.	S7		
Fig. S7	SEM of SOC-1 (a) and SOC-2 (b).	S8		
Fig. S8	Rate performances of SOC-1 (a) and SOC-3 (b) from 50 to 500 mA $g^{\text{-1}}$ and SOC-3 (c)			
	from 50 to 2000 mA g ⁻¹ .			
Fig. S9	Charge-discharge curve of the electrode made of SOC-3 at 500 mA g $^{-1}$.	S10		
Fig. S10	TEM image of SOC-3 after tenth cycles in the current density of 500 mA g ⁻¹ .	S11		
Fig. S11	The electrochemical impedance spectra of SOC-3.	\$12		
Table S1	The carbon, nitrogen, and hydrogen contents of precursors and calcination products	\$13		
	from elemental analysis.			
Table S2	The capacities of selected SnO ₂ -based anode materials in lithium-ion batteries.	S14		

Fig. S1 SEM images of initial SnO_2 nanoparticles (a),calcination product of SnO_2 nanoparticles at 800 °C in Ar atmosphere for 3 h (b), SOZ-1 (c), SOZ-2(d) and SOZ-3 (e). The size of octahedral ZIF-8 nanocrystals is about 200 nm. The size of initial SnO_2 nanoparticles and its <u>calcination products</u> express almost the same size and morphology. The uniform SnO_2 nanoparticles is highly dispersed, and were tightly adhered to the surface of ZIF-8.

Fig. S2 TGA curves of the precursors.

Fig. S3 PXRD of SOC-1 (a) and SOC-2 (b). There are peaks from Sn nanoparticles which are from carbonthermal reduction of SnO₂. All the diffraction peaks could be indexed to the tetragonal Sn nanoparticles (JCPDS no. 4-673) and tetragonal SnO₂ nanoparticles (JCPDS no. 21-1250).

Fig. S4 Raman spectra of SnO_2 in initial status (a) and in SOC-3(b).

Fig. S5 Raman spectra of SOC-1 (a) and SOC-2 (b).

Fig. S6 TGA curves of SOC-1 (a), SOC-2 (b) and SOC-3(c). According to TGA, the carbon contents are 28% for SOC-1, 19% for SOC-2, 18% for SOC-3. The carbon and nitrogen contents of the three materials from TGA are well consistent with elemental analysis results.

Fig. S7 SEM of SOC-1 (a) and SOC-2 (b).

Fig. S8 Rate performances of SOC-3 (a) from 50 to 2000 mA g^{-1} , SOC-1 (a) and SOC-3 (b) electrodes from 50 to 500 mA g^{-1} and SOC-3 (c) from 50 to 2000 mA g^{-1} .

Fig. S9 Charge-discharge curve of the electrode made of SOC-3 at 500 mA $g^{\mbox{-}1}.$

Fig. S10 TEM image of SOC-3 after tenth cycle in the current density of 500 mA $g^{\text{-}1}$.

Fig. S11 The electrochemical impedance spectra of SOC-3.

	C/%	N/%	H/%
SOZ-1	33.45	19.00	3.44
SOZ-2	27.51	14.27	3.29
SOZ-3	22.77	11.76	3.08
SOC-1	23.51	4.74	1.25
SOC-2	19.11	5.99	1.04
SOC-3	17.33	4.16	1.06

Table S1 The carbon, nitrogen, and hydrogen contents of precursors and calcination products from elementalanalysis.

 $\label{eq:solution} \textbf{Table S2} \ \textbf{The capacities of selected SnO}_2 \ \textbf{based anode materials in lithium-ion batteries}.$

Active material	Synthesis route	SnO ₂ size	Capacity (mA h g ⁻¹)/
		(nm)	Current density (A g-
			¹)/ Cycle Number
SnO₂@C (This work)	ultrasonication and pyrolysis	2-4	1032/0.1/150
SnO ₂ @C ⁴²	Introduction and pyrolysis	5-10	880/0.1/200
3D SnO ₂ /graphene foam ⁵³	ultrasonic, freeze-drying, anneal	6-12	533.7/1/150
Reduced graphene oxide/SnO ₂ ⁵⁴	microwave irradiation and anneal	100-200	649/0.05/30
Carbon-Coated SnO ₂ Nanocolloids ⁵⁵	hydrothermal and calcined	50-70	440/0.1/300
SnO ₂ @polypyrrole Nanotubes ⁵⁶	microwave-assisted and pyrolysis	2-3	790/0.2/200
Graphene-SnO ₂ -carbon ⁵⁷	hydrothermal and anneal	28-50	878/0.05/50
Polypyrrole (PPy)-derived SnO ₂ ⁵⁸	hydrothermal and calcination	5-10	598.3/0.1/50
N-doped graphene-SnO ₂ ⁵⁹	stirring and thermally treated	2-3	910/0.05/50
PANI-coated SnO ₂ /graphene ⁶⁰	in situ polymerization	4-8	502/1/100
graphene-based SnO ₂ ⁶¹	solvothermal	3.8-5	847/0.0782/50
SnO ₂ /Layed Carbon ⁶²	polymerization and pyrolysis	50-70	700/0.1/115
bowl-likeSnO ₂ @carbon ⁶³	template and calcination	900	963/0.4/100
SnO/SnO ₂ /GNS ⁶⁴	sonication and refluxing	<30	508/0.1/30
SnO ₂ nanoparticles ⁶⁵	stir and calcination	30-50	541.8/0.4/100
SnO ₂ @MIL-101(Cr) ⁶⁶	stir and heat treatment	<50	510/0.079/100
SnO ₂ /NiO Nanotubes ⁶⁷	Electrospinning, calcination and	20-26	826/1/500
	electrospinning method		
SnO ₂ hollow nanoplate ⁶⁸	spray pyrolysis and thermal	5-50	598/0.5/600
	oxidation		