Supplementary information for

Heterogeneous Fenton-like Degradation of Phenanthrene Catalyzed by Schwertmannite Biosynthesized Using *Acidithiobacillus ferrooxidans*

Xiaoqing Meng^a, Su Yan^a, Wenzhu Wu^c, Guanyu Zheng^{a,b*}, Lixiang Zhou^{a,b}

^aDepartment of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China ^bJiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China ^cNanjing Institute of Environmental Science, Ministry of Environmental Protection of PRC, Nanjing 210042, China

> **Corresponding author*. Tel./fax: +86 25 84395160. E-mail address: gyzheng@njau.edu.cn (G. Zheng)

This supporting information contains a 7-page document, including the detailed descriptions of the preparation of chemosynthetic schwertmannite and chemosythetic goethite, 4 figures, 1 tables and this cover page.

Text S1. Preparation of chemosynthetic schwertmannite and chemosythetic goethite

Chemosynthetic schwertmannite was prepared using the chemically oxidative synthesis method. Briefly, 1.80 mL of 30% (v/v) H_2O_2 was added into 150 mL of 160 mmol/L FeSO₄·7H₂O solution. The flasks were then incubated for 24 h at 180 rpm and 28 °C in a rotary shaker. Then the precipitates formed in the flasks were collected through filtering with Whatman No. 4 filter paper and dried at 50°C to a constant weight. Chemosythetic goethite was prepared in the laboratory according to the followed method. Firstly, the pH of a 0.2 M Fe(NO₃)₃ solution was adjusted to 11.0 with 0.2 M NaOH and then incubated at 180 rpm and 22°C for 48 h in a rotary shaker. After heating in a water bath at 90 °C for 16 h followed by repeated rinsing of the solids with deionized water, the solids were dried for 16 h at 70 °C to a constant weight.

Fig. S1 SEM images of the chemosynthetic schwertmannite particles: \times 2000 (a) and \times 20000 (b).

Fig. S2 GC-MS chromatograms of extracts of phenanthrene degradation catalyzed by biosynthetic schwertmannite after (a) 0 h, (b) 1 h and (c) 5 h reaction time. Experimental conditions: [phenanthrene]₀ = 1 mg/L, $[H_2O_2]_0 = 200$ mg/L, and solution initial pH = 3.0.

Fig. S3 Mass spectra of Product G (retention time of 26.192 or 26.342 min, m/z = 405).

Fig. S4 FTIR analyses of newly biosynthetic schwertmannite and the schwertmannite after being used for 12 cycles. Experimental conditions were [phenanthrene]₀ = 1 mg/L, [schwertmannite]₀ = 1 g/L, $[H_2O_2]_0 = 200$ mg/L, solution initial pH = 3.0, and reaction time of 12 h in each cycle.

Table S1 Binding energy of Fe 2p, and Fe²⁺ and Fe³⁺ surface concentration on the biosyntheticschwertmannite catalyst before and after phenanthrene degradation.

	Binding Energy (eV)				Fe ²⁺ surface	Fe ³⁺ surface
	Fe ²⁺		Fe ³⁺		concentration	concentration
	2p _{1/2}	2p _{1/3}	2p _{1/2}	2p _{1/3}	(%)	(%)
Before	710.9	724.4	712.5	726.1	41.8	58.2
After	711.3	724.7	712.9	725.9	54.5	45.5