Supplementary Information

Controllable synthesis and magnetotransport properties of Cd₃As₂ Dirac semimetal nanostructures

Kang Zhang,^{†a} Haiyang Pan,^{†b} Minhao Zhang,^a Zhongxia Wei,^b Ming Gao,^a Fengqi Song,^{*b} Xuefeng Wang^{*a} and Rong Zhang^a

^a National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China. E-mail: xfwang@nju.edu.cn.

^b National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Physics, Nanjing University, Nanjing, Jiangsu 210093, P. R. China. E-mail: songfengqi@nju.edu.cn.

[†]These authors contributed equally to this work.

S1: Powder X-ray diffraction (XRD) patterns of Cd_3As_2 nanowires and nanobelts are shown in Fig. S1 (a) and (b), respectively. They both show the good agreement with the theoretical peak positions of Cd_3As_2 , which has an I41cd symmetry structure (red lines). The powder samples are collected from grinding the grown Cd_3As_2 nanostructures on Si substrates.

Fig. S1. The X-ray diffraction pattern from (a) Cd₃As₂ nanowires powder and (b) Cd₃As₂ nanobelts powder. The red lines show the theoretical positions of Cd₃As₂ (space group I41cd) peaks.

S2: To give more information on the magnetoresistance (MR), Figure 4(c), (f) and Figure 5(c) are drawn as $MR(\%)=(R(B)-R(0T))\times100/R(0T)$. Figure S2(a), (b), (c) display the MR curves of Cd₃As₂ nanobelt, zigzag nanobelt and nanowire, respectively, and Figure S2(d), (e), (f) is the temperature dependence of MR at 14 T.

Fig. S2. The MR curves and the corresponding temperature dependence at 14 T. (a) and (d) are for the nanobelt device. (b) and (e) are for the zigzag nanobelt device. (c) and (f) are for the nanowire device.

S3: We have measured other nanodevice to study the magnetoresistance of Cd_3As_2 nanostructures. As displayed in Fig. S3, another nanobelt also exhibits the insulating behavior and unsaturated linear magnetoresistance. This confirms the reality of insulating behavior and magnetoresistance of our nanostructures.

Fig. S3. (a) The SEM image of the nanobelt device. (b) Its temperature-dependent resistance curve. (c) Its magnetoresistance measured at various temperatures in perpendicular magnetic field.