Electronic Supplementary Information

One-pot redox synthesis of Pt/Fe₃O₄ catalyst for efficiently

chemoselective hydrogenation of cinnamaldehyde

Yong Zhang,^{a,b} Chun Chen,*^a Wanbing Gong,^{a,b} Jieyao Song,^{a,b} Yanping Su,^{a,b} Haimin Zhang,^a Guozhong Wang^a and Huijun Zhao*^{a,c}

^a Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China. E-mail: h.zhao@griffith.edu.au; chenchun2013@issp.ac.cn
 ^b University of Science and Technology of China, Hefei, Anhui 230026, China

^c Centre for Clean Environment and Energy, Griffith University, Gold Coast Campus, Queensland 4222, Australia

Tables

	Pt ⁰ binding e	nergy (eV)	Pt ²⁺ binding	energy (eV)	Dt^{2+} (see at lease (0/)
Sample —	4f _{7/2}	4f _{5/2}	4f _{7/2}	4f _{5/2}	Pt ²⁺ fraction (%)
fresh	71.3	74.6	72.2	75.3	28.5
used	71.3	74.6	72.1	75.4	33.7

Table S1 The binding energy and fraction of Pt species for $Pt/Fe_3O_4(100)$ catalyst

Table S2 Previous literatures for the chemoselective hydrogenation of CAL to COL over Pt-based supported

Entry	Catalysts	Reaction conditions	Conv. (%)	Sel. (%)	Refs.
1	Pt/CeO ₂ -ZrO ₂ +NaOH	RT, 20 bar H ₂ , 2 h	42.3	97.3	1
2	Pt@UiO-66-NH ₂	298 K, 40 bar H ₂ , 42 h	85.9	87.9	2
3	Pt/MesoTiO ₂ -SiO ₂ -M	353 K, 40 bar H ₂ , 0.5 h	98.8	90.9	3
4	MIL-101(Cr)@Pt@MIL-101(Fe) ^{2.9}	RT, 30 bar H ₂ , 20 h	99.8	95.6	4
5	Pt/MIL-100@MIL-100	298 K, 1.01 bar H ₂ , 4 h	95.0	96.0	5
6	Pt/ZnFe-LDH	333 K, 20 bar H ₂ , 2 h	95.1	91.0	6
7	PtCo/N-CNT	343 K, 20 bar H ₂ , 1.5 h	99.7	87.9	7
8	Pt/CoAl-LDH	343 K, 20 bar H ₂ , 2 h	94.3	74.2	8
9	Co-Pt/SiO ₂	353 K, 40 bar H ₂ , 2 h	28.6	78.0	9
10	Pt/Fe ₃ O ₄ (100)	303 K, 5 bar H ₂ , 2.5 h	94.2	92.2	This study

References

- 1 S. Bhogeswararao and D. Srinivas, J. Catal., 2012, 285, 31-40.
- Z. Guo, C. Xiao, R. V. Maligal-Ganesh, L. Zhou, T. W. Goh, X. Li, D. Tesfagaber, A. Thiel and W. 2 Huang, ACS Catal., 2014, 4, 1340-1348.
- 3 Q. Wu, C. Zhang, B. Zhang, X. Li, Z. Ying, T. Liu, W. Lin, Y. Yu, H. Cheng and F. Zhao, J. Colloid. Interface. Sci., 2016, 463, 75-82.
- 4 M. Zhao, K. Yuan, Y. Wang, G. Li, J. Guo, L. Gu, W. Hu, H. Zhao and Z. Tang, Nature., 2016, 539, 76-80.
- 5 H. Liu, L. Chang, L. Chen and Y. Li, *ChemCatChem.*, 2016, **8**, 946-951.
- 6
- Z. Tian, Q. Li, J. Hou, Y. Li and S. Ai, *Catal. Sci. Technol.*, 2016, 6, 703-707.
 Z. Tian, C. Liu, Q. Li, J. Hou, Y. Li and S. Ai, *Appl. Catal.*, A Gen., 2015, 506, 134-142.
 Z. Tian, Q. Li, J. Hou, L. Pei, Y. Li and S. Ai, *J. Catal.*, 2015, 331, 193-202. 7
- 8
- R. Zheng, M. D. Porosoff, J. L. Weiner, S. Lu, Y. Zhu and J. G. Chen, Appl. Catal., A Gen., 2012, 419-9 **420**, 126-132.

Entry	CAL concentration (mol L ⁻¹)	CAL conv. (%)	COL sel. (%)	HCAL sel. (%)	HCOL sel. (%)
1	0.032	94.2	92.9	3.9	3.2
2	0.079	66.2	92.5	3.2	4.3
3	0.16	47.8	92.3	3.7	4.0
4	0.32	25.9	90.6	4.3	5.1
5	0.79	23.5	92.4	4.2	3.4

Table S3 Effect of concentration of substrate on catalytic performance over $Pt/Fe_3O_4(100)$ catalyst. Reactionconditions: 303 K, 5 bar H₂, 120 min, 5 ml 2-proponal used as solvent

Entry	Stirring speed (rpm)	CAL conv. (%)	COL sel. (%)	HCAL sel. (%)	HCOL sel. (%)
1	200	15.6	87.4	12.6	5.4
2	530	37.9	92.4	4.4	3.2
3	750	36.1	93.1	3.4	3.5
4	1000	35.9	92.3	4.0	3.7

Table S4 Effect of stirring speed on catalytic performance over $Pt/Fe_3O_4(100)$ catalyst. Reaction conditions: 303 K, 5 bar H₂, 10 min, 5 ml 2-proponal used as solvent

Figures

Fig. S1 Synthesis procedure of Pt/Fe_3O_4 catalysts with a facile redox reaction.

Fig. S2 TEM and HRTEM images: (a-b) Pt/Fe₃O₄(200) catalyst; (c-d) Pt/Fe₃O₄(50) catalyst.

Fig. S3 The GC spectrum of products over $Pt/Fe_3O_4(100)$ catalyst for the hydrogenation of CAL.

Fig. S4 TEM images of fresh and used $Pt/Fe_3O_4(100)$ catalyst.