Supplementary materials

RSC Advances

In situ synthesis and immobilization of Cu(II)-pyridyl complex on silica microsphere as a new Fenton-like catalyst for RhB degradation at near-neutral pH

Wenhua Yuan¹, Chaoying Zhang¹, Hong Wei², Qinqin Wang¹, Kebin Li^{1*}

¹College of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Function Molecule Chemistry, Ministry of Education, Northwest University, Xi'an 710069, PR China;

² State Key Laboratory Base of Eco-Hydraulic Engineering in Arid Areas, Xi'an University of Technology, Xi'an 710048, PR China

*Corresponding author. Phone: +001-132-5988-2543, E-mail: <u>kebin68li@163.com</u> *E-mail: <u>kebin68li@163.com</u>*

Fig. S1 SEM image of the prepared silica particles

Fig. S2 Size distribution of the silica microspheres

Fig. S3 Temporal changes of TOC and toxicity during the degradation of 10 mg·L⁻¹ RhB. ([catalyst]=2 g·L⁻¹; $[H_2O_2]=200 \text{ mg·L}^{-1}$; pH =7.1; T=20 °C).

Fig. S4. Decomposition of H_2O_2 catalyzed by the prepared catalyst. (a) Effects of catalyst dosage on H_2O_2 decomposition. (b) Efficiency of H_2O_2 decomposition versus catalyst dosage. Decomposition efficiency (DE) was assessed by the following equation:

$$DE = \frac{\Delta [H_2 O_2]}{[H_2 O_2] [\text{catalyst}]} \times 100\%$$

Fig. S5 Time profiles for the cyclic degradation of RhB. ([RhB]=5 mg·L⁻¹; [catalyst]=2 g·L⁻¹; [H₂O₂]=200 mg·L⁻¹; pH =7.1; T=20 °C)

Concentration of catalyst $(g \cdot L^{-1})$	<i>k</i> (h ⁻¹)		R^2	
0.5	0.360	0.998		
1	0.395	0.995		
2	0.484	0.998		
3	0.547	0.997		
4	0.556	0.992		
Concentration of H_2O_2 (mg·L ⁻¹)				
50	0.251	0.996		
100	0.369	0.997		
150	0.453	0.998		
200	0.484	0.998		
250	0.607	0.997		
300	0.665	0.996		
Concentration of dye (mg· L^{-1})	<i>k</i> (h ⁻¹)	R^2	$r_0(\text{mg}\cdot\text{L}^{-1}\cdot\text{h}^{-1})$	
2.5	0.574	0.992	0.252	
5	0.484	0.998	0.314	
10	0.392	0.997	0.454	
12.5	0.306	0.995	.995 0.476	

Table S1 The kinetic parameters for RhB degradation under various experimental conditions

	Rate con	nstant	Activation parameters				
T(K)	$\frac{k}{(h^{-1})}$	R^2	$\frac{E_{\rm a}}{(\rm kJ\cdot mol^{-1})}$	$ riangle S^{\#}$ (J·mol-	$ riangle H^{\!\#}$	$ riangle G^{\#}$	
				¹ ·K ⁻¹)	(kJ·mol⁻¹)	(kJ·mol ⁻¹)	
293.15	0.483	0.996					
297.65	0.587	0.984	38.60	-119.55	36.13	71.71	
307.65	0.972	0.993					
317.65	1.597	0.991					

Table S2 Rate constants and the activation parameters for the degradation of RhB with H_2O_2 catalyzed by Cu(II)–pyridyl complex immobilized on silica microspheres