A macro-porous graphene oxide-based membrane as a separator with enhanced thermal stability for high-safety lithium-ion battery

Haiyang Liao, ^a Haiyan. Zhang, ^{a, b} * Haoqun Hong ^{a, b} Gai Qin ^a Zhenghui Li ^{a, b}

Liuqing Li, ^a

^a School of Materials and Energy, Guangdong University of Technology, Guangzhou
510006, China; * E-mail: hyzhang@gdut.edu.cn (HY. Zhang); Fax: +86 20 39322570;
^b Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter,
Guangdong University of Technology, Guangzhou 510006, China.

Supporting Information:

Fig. S1 SEM image of cross-section of GO-g-HBPE membrane before extracting the PS templates, (a) low magnification (b) high magnification.

Fig. S2 SEM image of cross-section of pure GO and macroporous GO membranes.

Element	Atomic Concentration (%)		
	GO	GO-g-HBPE	
С	55.68	63.84	
О	41.32	34.55	
Ν	1.12	0.37	
S	1.01	0.07	
Si	0.55	0.94	
Cl	0.23	0.23	

$\label{eq:table_state} \textbf{Table S1} \text{ The atomic concentration determined by XPS}$

	Porosity (%)	Electrolyte uptake (%)	Ionic conductivity (mS/cm)	t+
PP separator	39	103	0.47	0.26
GO-g-HBPE separator	58	158	1.7	0.58
GO separator	16	23	0.07	0.11
Macroporous GO separator	55	68	0.28	0.18

 Table S2 Membrane properties of a commercial PP separator and GO-g-HBPE

separator

Fig S3 ¹H- and ¹³C-NMR spectra of HBPE; carbons belonging to the terminal, dendritic, linear 1, 3 and linear 1, 4 groups are indicated by T, D, L_{13} and L_{14} ; T, D, L_{13} and L_{14} are respectively represent terminal (T), dendritic (D), linear 1, 3 (L_{13}) and linear 1, 4 (L_{14}) groups.

Fig. S4 Roman spectra of GO and GO-g-HBPE

Fig. S5 Photographs of the GO and MGO separators (a) before and (b) after heating to $200 \text{ }^{\circ}\text{C}$ for 0.5 h.

Fig. S6 Electrochemical working window of pure GO and MGO separator.

Fig. S7 Charge-discharge performance of (a) pure GO separator and (b) MGO separator.