Large-scalable RTCVD Graphene/PEDOT:PSS Hybrid Conductive Film for its Application in Transparent and Flexible Thermoelectric Nanogenerators

Chanil Park,[‡]a Dohyuk Yoo,[‡]a Soeun Im,^a Soyeon Kim,^a Wonseok Cho,^a Jaechul Ryu,^b and

Jung Hyun Kim^{*a}

^aDepartment of Chemical and Biomolecular Engineering, Yonsei University, Yeonsero 50, Seodaemun-gu, Seoul 120–749, Republic of Korea.

^bHaesung 2nd Building 8F 508, Teheran-ro, Gangnam-gu, Seoul 135-725, Republic of Korea

*E-mail: jayhkim@yonsei.ac.kr

[‡]C.P. and D.Y. contributed equally to this work.

Figure S1. Thickness of the graphene/PEDOT:PSS hybrid films, which were coated using various spin speeds.

Figure S2. Raman spectral mapping image of (a) RTCVD graphene, and (b) a graphene/ PEDOT:PSS hybrid film.

Figure S3. AFM image of RTCVD graphene on the Cu foil.