Supporting Information for

Asymmetric transfer hydrogenation–Sonogashira coupling one–pot enantioselective tandem reaction catalysed by a Pd(0)– Ru(III)/diamine–bifunctionalized Periodic Mesoporous Organosilica

Yuxi Zhao, Ronghua Jin, Yajie Chou, Yilong Li, Jingrong Lin and Guohua Liu*

Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China. Tel: + 86 21 64322280; E-mail: ghliu@shnu.edu.cn.

	Content	Page
Experimental	General, preparation and catalysis	S2
Figure S1	FT-IR spectra of 2 and catalyst 3 .	S 3
Figure S2	Solid-state ²⁹ Si CP MAS NMR spectra of 2 and catalyst 3 .	S3
Figure S3	Small-angle powder XRD patterns of 2 and catalyst 3 .	S4
Figure S4	TEM images of catalyst 3 viewed along the [001] directions	S4
Figure S5	XPSspectraofthehomogeneousMesityleneRuArDPENand catalyst3forRuspecies,and catalyst3forPdspecies.species	S5
Figure S6	Time course for one-pot transformation of 4- iodoacetophenone and ethynylbenzene with catalyst 3'	S6
Figure S7	The ATH–Sonogashira coupling one-pot enantioselective cascade reactions.	S7
Figure S8	Reusability of catalyst 3 for the ATH–Sonogashira coupling reaction of 4-iodoacetophenone and phenylacetylene	S24
Figure S9	The ¹ H NMR and GC/MS of chiral products	S27

Experimental

1). General. All experiments, which are sensitive to moisture or air, were carried out atmosphere standard under Ar using the Schlenk techniques. 3an mercaptopropyltriethoxysilane, 1,4-bis(triethyoxysilyl)ethane, 4-(2-(trimethoxysilyl)ethyl)benzene-1-sulfonyl chloride, 4-(methylphenylsulfonyl)-1,2diphenylethylenediamine [(S,S)-TsDPEN], surfactant P123 (CH₂-CH₂O)₂₀(CH₂(CH₃)CH₂O)₇₀(CH₂CH₂O)₂₀), [mesityleneRuCl₂]₂ were purchased from Sigma-Aldrich Company Ltd and used as received. Compound of (S,S)-4-(trimethoxysilyl)ethyl)phenylsulfonyl-1,2-diphenylethylenediamine [J. Mater. Chem., **2010**, *20*, 1970.] was synthesized according to the reported literature.

2). Preparation of PdCl2@mestyleneRuArDPEN-PMO (3'). In a typical synthesis, 2.0 structure-directing P123 of pluronic (CH₂g agent, CH₂O)₂₀(CH₂(CH₃)CH₂O)₇₀(CH₂CH₂O)₂₀), was completely dissolved in a mixture of 80 mL of hydrochloric acid (0.2 N) and 6.0 g of KCl. The mixture was stirred at room temperature for 1.0 h. Subsequently, 6.39 g (18.00 mmol) of the silica precursor 1,2bis(triethoxysilyl)ethane was added at 40 °C. After a pre-hydrolysis period of 60 minute, 0.50 g (1.00 mmol) of (*S*,*S*)-DPEN-SO₂Ph(CH₂)₂Si(OMe)₃ (1) and 0.24 g (1.00 mmol) of 3-mercaptopropyltriethoxysilane was added. The reaction mixture was stirred at 40 °C for 24 h and then aged at 100 °C for 24 h. The resulting solid was filtered, rinsed with excess ethanol, and then dried overnight on a filter. The surfactant template was removed by refluxing in acidic ethanol (400 mL per gram) for 24 h. The solid was filtered, rinsed with ethanol again, and then dried at 60 °C under reduced pressure overnight to afford SH@ArDPEN@PMO (2) (3.62 g) in the form of a white powder. The part of collected solids (1.0 g) was suspended in 40 mL of dry ethanol, and 116.2 mg (0.66 mmol) of PdCl₂ was added to the solution at ambient temperature. The resulting mixture was stirred for 12 h. The mixture was filtered through filter paper and then rinsed with excess water and CH₂Cl₂, and then dried at 60 °C under reduced pressure overnight to afford PdCl₂@ArDPEN@PMO as in the form of a yellow powder. The part of collected PdCl₂@ArDPEN@PMO (0.50 g) was suspended in 20 mL of dry CH₂Cl₂ again, and 87.0 mg (0.15 mmol) of [RuCl₂(mestylene)]₂ was added to the solution at ambient temperature. The resulting mixture was stirred for 12 h. The mixture was filtered through filter paper and then rinsed with excess water and CH₂Cl₂. After Soxhlet extraction for 12 h in CH₂Cl₂ to remove homogeneous and unreacted starting materials, the solid was dried at ambient temperature under vacuum overnight to afford catalyst 3'(0.45 g) as a brown powder.

Figure S1. FT-IR spectra of 2 and catalyst 3.

Figure 2. Solid-state ²⁹Si CP MAS NMR spectra of 2 and catalyst 3.

Figure S3. Small-angle powder XRD patterns of 2 and catalyst 3.

Figure S4. TEM images of catalyst 3 viewed along the [001] directions.

Figure S5. XPS spectra of the homogeneous MesityleneRuArDPEN and catalyst **3** for Ru species, and catalyst **3** for Pd species.

Figure S6. Time course for one-pot transformation of 4-iodoacetophenone and ethynylbenzene with catalyst **3'** (65°C, cat. = 2.6 mmol % of Ru and 2.0 mmol % or Pd, based on ICP analysis)

Figure S7. The ATH–Sonogashira coupling one-pot enantioselective cascade reactions.

(*S*)-1-(4-(phenylethynyl)phenyl)ethanol. (HPLC: Chiracel OD-H, detected at 254 nm, eluent: n-hexane/2-propanol = 98/2, flow rate = 1 mL/min, 20 °C).

(*S*)-1-(4-((4-fluorophenyl)ethynyl)phenyl)ethanol. (HPLC: Chiracel OD-H, detected at 254 nm, eluent: n-hexane/2-propanol = 99/1, flow rate = 1 mL/min, 20 °C).

_									
ID#	名称	保留时间	峰#	面积	面积x	高度	高度%		
1	RT33. 128	33. 128	1	68204585	98.8418	522027	98.9322		
2	RT36.627	36.627	2	799226	1.1582	5635	1.0678		

(*S*)-1-(4-((3-fluorophenyl)ethynyl)phenyl)ethanol. (HPLC: Chiracel OD-H, detected at 254 nm, eluent: n-hexane/2-propanol = 99/1, flow rate = 1 mL/min, 20 °C).

(*S*)-1-(4-((4-chlorophenyl)ethynyl)phenyl)ethanol. (HPLC: Chiracel OD-H, detected at 254 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1 mL/min, 20 °C).

(*S*)-1-(4-((4-(trifluoromethyl)phenyl)ethynyl)phenyl)ethanol. (HPLC: Chiracel OD-H, detected at 254 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1 mL/min, 20 °C).

(*S*)-1-(4-((4-methoxyphenyl)ethynyl)phenyl)ethanol. (HPLC: Chiracel OD-H, detected at 254 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1 mL/min, 20 °C).

(*S*)-1-(4-(p-tolylethynyl)phenyl)ethan-1-ol. (HPLC: Chiracel OD-H, detected at 254 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1 mL/min, 20 °C).

(*S*)-1-(4-(m-tolylethynyl)phenyl)ethanol. (HPLC: Chiracel OD-H, detected at 254 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1 mL/min, 20 °C).

(*S*)-1-(3-(phenylethynyl)phenyl)ethanol. (HPLC: Chiracel OD-H, detected at 254 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1 mL/min, 20 °C).

(*S*)-1-(3-((4-fluorophenyl)ethynyl)phenyl)ethanol. (HPLC: Chiracel OD-H, detected at 254 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1 mL/min, 20 °C).

(*S*)-1-(3-((3-fluorophenyl)ethynyl)phenyl)ethanol. (HPLC: Chiracel OD-H, detected at 254 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1 mL/min, 20 °C).

(*S*)-1-(3-((4-chlorophenyl)ethynyl)phenyl)ethanol. (HPLC: Chiracel OD-H, detected at 254 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1 mL/min, 20 °C).

(*S*)-1-(3-((4-(trifluoromethyl)phenyl)ethynyl)phenyl)ethanol. (HPLC: Chiracel OD-H, detected at 254 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1 mL/min, 20 °C).

(*S*)-1-(3-((4-methoxyphenyl)ethynyl)phenyl)ethanol. (HPLC: Chiracel OD-H, detected at 254 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1 mL/min, 20 °C).

(*S*)-1-(3-(p-tolylethynyl)phenyl)ethanol. (HPLC: Chiracel AS-H, detected at 254 nm, eluent: n-hexane/2-propanol = 98/2, flow rate = 1 mL/min, 20 °C).

(*S*)-1-(3-(m-tolylethynyl)phenyl)ethanol. (HPLC: Chiracel OD-H, detected at 254 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1 mL/min, 20 °C).

(S)-1-(3-((4-((S)-1-hydroxyethyl)phenyl)ethynyl)phenyl)ethan-1-ol. (HPLC: Chiracel AD-H, detected at 254 nm, eluent: n-hexane/2-propanol = 90/10, flow rate = 1 mL/min, 20 °C).

Figure 8. Reusability of catalyst **3** for the ATH–Sonogashira coupling reaction of 4-iodoacetophenone and phenylacetylene.

Recycle 4

Recycle 6

Figure S9. The ¹H NMR and GC/MS of chiral products.

(S)-1-(4-(phenylethynyl)phenyl)ethanol

(S)-1-(4-((3-fluorophenyl)ethynyl)phenyl)ethanol

(S) - 1 - (4 - ((trifluoromethyl)phenyl)ethynyl)phenyl)ethanol

(S)-1-(4-(p-tolylethynyl)phenyl)ethanol

(S)-1-(4-(m-tolylethynyl)phenyl)ethanol

(S)-1-(3-(phenylethynyl)phenyl)ethanol

(S)-1-(3-((4-fluorophenyl)ethynyl)phenyl)ethanol.

(S)-1-(3-((3-fluorophenyl)ethynyl)phenyl)ethanol.

(S) - 1 - (3 - ((4 - chlorophenyl) ethynyl) phenyl) ethanol.

(S)-1-(4-((4-methoxyphenyl)ethynyl)phenyl)ethanol.

(S)-1-(4-(p-tolylethynyl)phenyl)ethanol.

(S)-1-(4-(m-tolylethynyl)phenyl)ethanol

(S)-1-(3-((4-((S)-1-hydroxyethyl)phenyl)ethynyl)phenyl)ethanol.