Asymmetric transfer hydrogenation-Sonogashira coupling one-pot enantioselective tandem reaction catalysed by a $\mathbf{P d}(0)-$ $\mathbf{R u}$ (III)/diamine-bifunctionalized Periodic Mesoporous Organosilica

Yuxi Zhao, Ronghua Jin, Yajie Chou, Yilong Li, Jingrong Lin and Guohua Liu*

Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China. Tel: + 8621

64322280; E-mail: ghliu@shnu.edu.cn.

	Content	Page
Experimental	General, preparation and catalysis	S2
Figure S1	FT-IR spectra of 2 and catalyst 3.	S3
Figure S2	Solid-state ${ }^{29}$ Si CP MAS NMR spectra of 2 and catalyst $\mathbf{3}$.	S3
Figure S3	Small-angle powder XRD patterns of 2 and catalyst 3.	S4
Figure S4	TEM images of catalyst 3 viewed along the [001] directions	S4
Figure S5	XPS spectra of the homogeneous MesityleneRuArDPEN and catalyst 3 for Ru species, and catalyst 3 for Pd species.	S5
Figure S6	Time course for one-pot transformation of 4- iodoacetophenone and ethynylbenzene with catalyst $\mathbf{3}$	S6
Figure S7	The ATH-Sonogashira coupling one-pot enantioselective cascade reactions.	S7
Figure S8	Reusability of catalyst 3 for the ATH-Sonogashira coupling reaction of 4-iodoacetophenone and phenylacetylene	S24
Figure S9	The ${ }^{1}$ H NMR and GC/MS of chiral products	S27

Experimental

1). General. All experiments, which are sensitive to moisture or air, were carried out under an Ar atmosphere using the standard Schlenk techniques. 3mercaptopropyltriethoxysilane, 1,4-bis(triethyoxysilyl)ethane, 4-(2-(trimethoxysilyl)ethyl)benzene-1-sulfonyl chloride, 4-(methylphenylsulfonyl)-1,2diphenylethylenediamine $\quad[(S, S)$-TsDPEN $]$ surfactant P123 $\quad\left(\mathrm{CH}_{2}-\right.$ $\left.\left.\mathrm{CH}_{2} \mathrm{O}\right)_{20}\left(\mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{O}\right)_{70}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{20}\right)$, [mesitylene $\left.\mathrm{RuCl}_{2}\right]_{2}$ were purchased from Sigma-Aldrich Company Ltd and used as received. Compound of (S, S)-4-(trimethoxysilyl)ethyl)phenylsulfonyl-1,2-diphenylethylenediamine [J. Mater. Chem., 2010, 20, 1970.] was synthesized according to the reported literature.
2). Preparation of PdCl2@mestyleneRuArDPEN-PMO (3'). In a typical synthesis, 2.0 g of structure-directing agent, pluronic P123 $\left(\mathrm{CH}_{2}-\right.$ $\left.\left.\mathrm{CH}_{2} \mathrm{O}\right)_{20}\left(\mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{O}\right)_{70}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{20}\right)$, was completely dissolved in a mixture of 80 mL of hydrochloric acid $(0.2 \mathrm{~N})$ and 6.0 g of KCl . The mixture was stirred at room temperature for 1.0 h . Subsequently, $6.39 \mathrm{~g}(18.00 \mathrm{mmol})$ of the silica precursor 1,2bis(triethoxysilyl)ethane was added at $40^{\circ} \mathrm{C}$. After a pre-hydrolysis period of 60 minute, $0.50 \mathrm{~g}(1.00 \mathrm{mmol})$ of $(S, S)-\mathrm{DPEN}-\mathrm{SO}_{2} \mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Si}(\mathrm{OMe})_{3}(\mathbf{1})$ and $0.24 \mathrm{~g}(1.00 \mathrm{mmol})$ of 3-mercaptopropyltriethoxysilane was added. The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 24 h and then aged at $100^{\circ} \mathrm{C}$ for 24 h . The resulting solid was filtered, rinsed with excess ethanol, and then dried overnight on a filter. The surfactant template was removed by refluxing in acidic ethanol (400 mL per gram) for 24 h . The solid was filtered, rinsed with ethanol again, and then dried at $60^{\circ} \mathrm{C}$ under reduced pressure overnight to afford SH@ArDPEN@PMO (2) (3.62 g) in the form of a white powder. The part of collected solids (1.0 g) was suspended in 40 mL of dry ethanol, and 116.2 $\mathrm{mg}(0.66 \mathrm{mmol})$ of PdCl_{2} was added to the solution at ambient temperature. The resulting mixture was stirred for 12 h . The mixture was filtered through filter paper and then rinsed with excess water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and then dried at $60{ }^{\circ} \mathrm{C}$ under reduced pressure overnight to afford $\mathrm{PdCl}_{2} @ \operatorname{ArDPEN} @ \mathrm{PMO}$ as in the form of a yellow powder. The part of collected $\mathrm{PdCl}_{2} @ \operatorname{ArDPEN} @ \operatorname{PMO}(0.50 \mathrm{~g})$ was suspended in 20 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ again, and $87.0 \mathrm{mg}(0.15 \mathrm{mmol})$ of $\left[\mathrm{RuCl}_{2} \text { (mestylene) }\right]_{2}$ was added to the solution at ambient temperature. The resulting mixture was stirred for 12 h . The mixture was filtered through filter paper and then rinsed with excess water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After Soxhlet extraction for 12 h in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to remove homogeneous and unreacted starting materials, the solid was dried at ambient temperature under vacuum overnight to afford catalyst $\mathbf{3}^{\prime}(0.45 \mathrm{~g})$ as a brown powder.

Figure S1. FT-IR spectra of 2 and catalyst 3.

Figure 2. Solid-state ${ }^{29} \mathrm{Si}$ CP MAS NMR spectra of $\mathbf{2}$ and catalyst $\mathbf{3}$.

Figure S3. Small-angle powder XRD patterns of $\mathbf{2}$ and catalyst $\mathbf{3}$.

Figure S4. TEM images of catalyst 3 viewed along the [001] directions.

Figure S5. XPS spectra of the homogeneous MesityleneRuArDPEN and catalyst $\mathbf{3}$ for Ru species, and catalyst $\mathbf{3}$ for Pd species.

Figure S6. Time course for one-pot transformation of 4-iodoacetophenone and ethynylbenzene with catalyst $\mathbf{3}^{\prime}\left(65^{\circ} \mathrm{C}\right.$, cat. $=2.6 \mathrm{mmol} \%$ of Ru and $2.0 \mathrm{mmol} \%$ or Pd , based on ICP analysis)

Figure S7. The ATH-Sonogashira coupling one-pot enantioselective cascade reactions.
(S)-1-(4-(phenylethynyl)phenyl)ethanol. (HPLC: Chiracel OD-H, detected at 254 nm , eluent: n-hexane $/ 2$-propanol $=98 / 2$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$).

(S)-1-(4-((4-fluorophenyl)ethynyl)phenyl)ethanol. (HPLC: Chiracel OD-H, detected at 254 nm , eluent: n -hexane $/ 2$-propanol $=99 / 1$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$).

(S)-1-(4-((3-fluorophenyl)ethynyl)phenyl)ethanol. (HPLC: Chiracel OD-H, detected at 254 nm , eluent: n -hexane $/ 2$-propanol $=99 / 1$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$).

(S)-1-(4-((4-chlorophenyl)ethynyl)phenyl)ethanol. (HPLC: Chiracel OD-H, detected at 254 nm , eluent: n -hexane $/ 2$-propanol $=97 / 3$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$).

(S)-1-(4-((4-(trifluoromethyl)phenyl)ethynyl)phenyl)ethanol. (HPLC: Chiracel ODH , detected at 254 nm , eluent: n -hexane $/ 2$-propanol $=97 / 3$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, 20$ ${ }^{\circ} \mathrm{C}$).

(S)-1-(4-((4-methoxyphenyl)ethynyl)phenyl)ethanol. (HPLC: Chiracel OD-H, detected at 254 nm , eluent: n -hexane $/ 2$-propanol $=97 / 3$, flow rate $\left.=1 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}\right)$.

(S)-1-(4-(p-tolylethynyl)phenyl)ethan-1-ol. (HPLC: Chiracel OD-H, detected at 254 nm , eluent: n -hexane $/ 2$-propanol $=97 / 3$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$).

(S)-1-(4-(m-tolylethynyl)phenyl)ethanol. (HPLC: Chiracel OD-H, detected at 254 nm , eluent: n-hexane $/ 2$-propanol $=97 / 3$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$).

(S)-1-(3-(phenylethynyl)phenyl)ethanol. (HPLC: Chiracel OD-H, detected at 254 nm , eluent: n-hexane $/ 2$-propanol $=97 / 3$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$).

(S)-1-(3-((4-fluorophenyl)ethynyl)phenyl)ethanol. (HPLC: Chiracel OD-H, detected at 254 nm , eluent: n -hexane $/ 2$-propanol $=97 / 3$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$).

(S)-1-(3-((3-fluorophenyl)ethynyl)phenyl)ethanol. (HPLC: Chiracel OD-H, detected at 254 nm , eluent: n -hexane $/ 2$-propanol $=97 / 3$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$).

(S)-1-(3-((4-chlorophenyl)ethynyl)phenyl)ethanol. (HPLC: Chiracel OD-H, detected at 254 nm , eluent: n -hexane $/ 2$-propanol $=97 / 3$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$).

(S)-1-(3-((4-(trifluoromethyl)phenyl)ethynyl)phenyl)ethanol. (HPLC: Chiracel ODH , detected at 254 nm , eluent: n -hexane $/ 2$-propanol $=97 / 3$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, 20$ ${ }^{\circ} \mathrm{C}$).

(S)-1-(3-((4-methoxyphenyl)ethynyl)phenyl)ethanol. (HPLC: Chiracel OD-H, detected at 254 nm , eluent: n -hexane $/ 2$-propanol $=97 / 3$, flow rate $\left.=1 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}\right)$.

(S)-1-(3-(p-tolylethynyl)phenyl)ethanol. (HPLC: Chiracel AS-H, detected at 254 nm , eluent: n-hexane $/ 2$-propanol $=98 / 2$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$).

(S)-1-(3-(m-tolylethynyl)phenyl)ethanol. (HPLC: Chiracel OD-H, detected at 254 nm , eluent: n-hexane $/ 2$-propanol $=97 / 3$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$).

(S)-1-(3-((4-((S)-1-hydroxyethyl)phenyl)ethynyl)phenyl)ethan-1-ol.
(HPLC:
Chiracel AD-H, detected at 254 nm , eluent: n-hexane $/ 2$-propanol $=90 / 10$, flow rate $=$ $1 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$).

Figure 8. Reusability of catalyst $\mathbf{3}$ for the ATH-Sonogashira coupling reaction of 4iodoacetophenone and phenylacetylene.

Recycle 2

Recycle 3

Recycle 4

Recycle 5

Recycle 6

Recycle 7

Recycle 8

Figure S9. The ${ }^{1} \mathrm{H}$ NMR and GC/MS of chiral products.

(S)-1-(4-(phenylethynyl)phenyl)ethanol

872

5

 1

(S)-1-(4-((4-fluorophenyl)ethynyl)phenyl)ethanol

(S)-1-(4-((3-fluorophenyl)ethynyl)phenyl)ethanol

(S)-1-(4-((4-chlorophenyl)ethynyl)phenyl)ethanol

（S）－1－（4－（（4－（trifluoromethyl）phenyl）ethynyl）phenyl）ethanol

がに
永

(S)-1-(4-((4-methoxyphenyl)ethynyl)phenyl)ethanol

(S)-1-(4-(p-tolylethynyl)phenyl)ethanol

(S)-1-(4-(m-tolylethynyl)phenyl)ethanol

(S)-1-(3-(phenylethynyl)phenyl)ethanol

(S)-1-(3-((4-fluorophenyl)ethynyl)phenyl)ethanol.

(S)-1-(3-((3-fluorophenyl)ethynyl)phenyl)ethanol.

(S)-1-(3-((4-chlorophenyl)ethynyl)phenyl)ethanol.

$$
\frac{\square}{\square} \frac{\square}{y}
$$

(S)-1-(3-((4-(trifluoromethyl)phenyl)ethynyl)phenyl)ethanol.
zhaoyux

$\frac{i n}{i}$

(S)-1-(4-((4-methoxyphenyl)ethynyl)phenyl)ethanol.

(S)-1-(4-(p-tolylethynyl)phenyl)ethanol.

(S)-1-(4-(m-tolylethynyl)phenyl)ethanol

（S）－1－（3－（（4－（（S）－1－hydroxyethyl）phenyl）ethynyl）phenyl）ethanol．

f	$\infty \times \infty$
べべへべへ	

~゙った尔尔
~゙った尔尔

8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.	35	3.0	2.5	20	1.5	1.0	0.5	0	－0．5
	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5			3.0	2.5	2.0	1.5	． 0	0.5	0.0	，

