A one-step process employing various amphiphiles for an electrically

insulating silica coating on graphite

Yeongseon Kim, Yinjie Quan, Minjae Kim, Jaechul Ju, Sung-Hyeon Baeck, and Sang Eun

Shim*

*Department of Chemistry & Chemical Engineering, Inha University,

100 Inharo, Namgu, Incheon 402-751, Korea

Table S1. Experimental conditions of the 1-step process.

Graphite		Amphiphi	le	NH ₄ OH	TEOS		Media	Reaction time
								(with amphiphile
								adsorption time)
d50/d90 (μm)	Mass (g)	Mass (g)	Mass % of amphiphile input compared with graphite	Mass ratio of NH ₄ OH to TEOS	Mass (g) of 1 st /2 nd input	Mass % of 1 st /2 nd input compared with graphite	Volume (ml) of EtOH	Time (h)
12/25 ¹⁾ 23/55	55	0.502)	10	1:3	4.0/2.0	80/40	75	12
100/140	5	0.253)	5	1:3	6.0/0	120/0	75	12

 100/140
 5
 0.25³)
 5
 1:3
 6.0/0
 120/0
 75
 12

 1) Two different size of raw graphite, KS6 (d50 3.4 μm, d90 6.5 μm) and KS44 (d50 18.6 μm, d90 45.4 μm), were prepared with a mass ratio

of 1:1.

2) The amphiphile used in the preparation of samples was Triton X-100.

3) The amphiphile used in the preparation of sample was PEG.

Table S2. The experiment	conditions of the modified	1-step process ver.2.
--------------------------	----------------------------	-----------------------

Graphite		Amphiphile		$\rm NH_4OH$	TEOS		Media	Reaction	Thermal
								time	sintering
d50/d90 (μm)	Mass (g)	Mass (g)	Mass % of amphiphil e input compar ed with graphit e	Mass ratio of NH ₄ OH to TEOS	Mass (g) of 1 st /2 nd input	Mass % of 1 st /2 nd input compare d with graphite	Volume (ml) of EtOH	Time (h)	Time (h)
12/251)	5	0	0	1:3	4.0/2.0	80/40	75	12	5
12/251)	5	0.502)	10	1:3	4.0/2.0	80/40	75	12	5
23/55	5	0.502)	10	1:3	4.0/2.0	80/40	75	12	5
100/140	5	0.253)	5	1:3	6.0/0	120/0	75	12	5

¹⁾ Two different size of raw graphite, KS6 (d50 3.4 μm, d90 6.5 μm) and KS44 (d50 18.6 μm, d90 45.4 μm), were prepared with a mass ratio of 1:1.

²⁾ The amphiphile used in the preparation of samples was Triton X-100.

³⁾ The amphiphile used in the preparation of sample #57 was PEG.

Table S3. The experiment conditions for the full coverage

Graphite		Amphiphile		NH ₄ OH	TEOS		Media	Reaction time	
d90 (µm)	Mass (g)	Mass (g)	Mass % of amphiphile input compared with graphite	Mass ratio of NH ₄ OH to TEOS	Mass (g)	Mass % compare d with graphite	Volume (ml) of EtOH	Time (h)	
25 ¹⁾ 55 140 550	5	0.5 ²⁾	10	1:3	6 5 4 4	120 100 80 80	75	3	3

 $^{1)}$ Two different sizes of raw graphite, KS6 (6 μm) and KS44 (44 μm), were prepared with a mass ratio of 1:1.

²⁾ The amphiphile used in the preparation of the samples was PEG.

Table S4 . The surface resistivity of PVP-assisted silica@graphite, d50 = 100, 300 μ m, via the two-step process

Graphite d50 (µm)	Surface resistivity (ohm/sq.)
100	10 ² -10 ³
300	10 ² -10 ³

Categories	Details	1 st pentagon (Inner)	2 nd pentagon	3 rd pentagon	4 th pentagon	5 th pentagon (Outer)	Examples
The protrusion of the particles	Comparing a particle in a range of average size, multiple numbers on Z-axis	1	1.5	1.5	2.5	Over 3.0	2.5-3.0 1.5-2.0 1.0
The average size and frequency of empty area b/n the particles	Average of long length (nm) and short length for the channels / A number of channels	Under 0.1 / -	0.3 /under 5	0.3 / over 5	0.5 / over 5	Over 1 / over 5	About 1 μm / over 5 channels 2 μm
The difference in the size of the particles	Comparing the diameter of small and large particles, the multiple numbers	Under 1.5	1.5	2	2.5	Over 3	A small particle A large particle
The average size of the particles	The average size of the particles	Over 70	50-70	40-50	20-40	Under 20	62 nm
The progress of sintering b/n the particles	The average degree (%) of overlapping particles	Over 80	60-80	30-60	10-30	Under 10	-50-70 % -70-90 %

Fig. S1. Details for the five metrics. The characteristics of silica particles (or islands) are measured in a 4 um × 4 um square area on the graphite.

	Morphology	Surface resistivity (ohm/sq.)
Silica@graphite in absence of amphiphile	<u>1µт</u>	10 ¹⁰ -10 ¹¹
Triton X-100- assisted silica@graphite	<u>1μm</u>	10 ¹² -10 ¹³

Fig. S2. The micrograph and surface resistivity of silica@graphite (d50 = 12 μ m) in the absence of an amphiphile and with the assistance of Triton X-100 (d50 = 12 μ m).

	[†] Spect [†] Spectrum	rum 1 1 1 um				(b)					
, C , O	, Si				Spectrum 1	ر بر مر	Si				Spectrum 1
1 2 Full Scale 7819 ct	3 4 s Cursor: 0.000	5 6 7	8 9 10	11 12 13	14 15 16 keV	1 2 Full Scale 5099 cts	3 4 Cursor: 0.000	5 6 7	8 9 10	11 12 13	14 15 16 ke\
Element	App (Conc.)	Intensity (Corrn.)	Weight %	Weight % (Sigma)	Atomic %	Element	App (Conc.)	Intensity (Corrn.)	Weight %	Weight % (Sigma)	Atomic %
С	129.19	0.3047	58.22	0.41	66.88	С	7.10	0.1635	51.43	1.11	63.81
0	71.90	0.2911	33.92	0.41	29.25	0	6.24	0.2841	26.00	0.93	24.21
Si	E4 00	0 9011	7.86	0.10	3.86	Si	17 72	0 9296	22 57	0.55	11 00

Fig. S3. EDAX of (a) the Triton X-assisted silica@graphite (12 μ m) and (b) the PEG-assisted silica@graphite (100 μ m) vs. sol-gel reaction time.

	Graphite of 12 μm	Graphite of 23 µm	Graphite of 100 µm	Graphite of 300 µm
PEG of M _n 400 g/mol	<u>1µm</u>	<u>1µт</u>	1 <u>1 pin</u>	a <u>a</u>
PEG of M _n 2,050 g/mol	<u>1 µт</u>		mute	<u>1</u> µm
PEG of M _n 4,600 g/mol	<u>1 µт</u>	rum.	τ <u> τ</u> μm	<u>3 µm</u>
PEG of M _n 10,000 g/mol	<u></u>		<u>1µт</u>	<u>ليس</u>

Fig. S4. FE-SEM images of the surfaces of PEG-assisted silica@graphite depending on the size of the graphite and M_n of PEG

Fig. S5. Graphs of TGA analysis on (a) 12 μm amphiphile-assisted silica@graphite, (b) 23 μm amphiphile-assisted silica@graphite, and (c) 100 μm amphiphile-assisted silica@graphite (Relating to Fig. 11).