Supporting information for

Bi_{7.38}Cr_{0.62}O_{12+x} crystal as a novel Visible-Light-Active Photocatalyst

up to \sim 650 nm

W.X. Liao,^{a,b} X.L. Zhao, ^{a,b} T.S. Wang,^{a,*}

^{a.} State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China. E-mail: wangtaisheng@sina.com

^{b.} University of Chinese Academy of Sciences, Beijing 100039, China

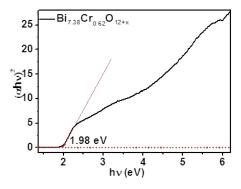
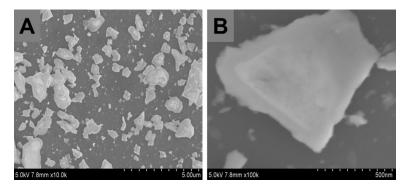
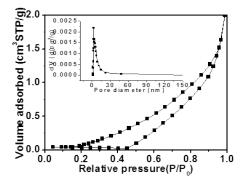
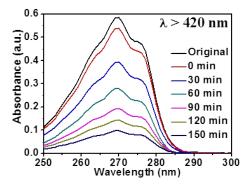
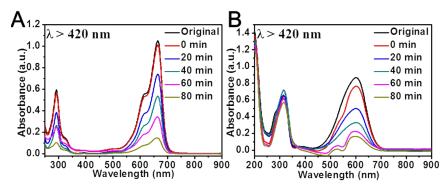
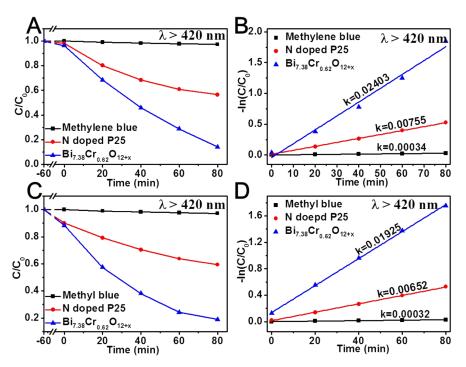
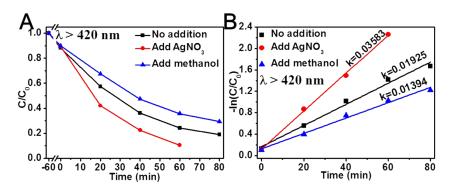




Fig. S1. The plot of transformed Kubelka-Munk function vs the energy of $Bi_{7,38}Cr_{0.62}O_{12+x}$ crystal.

Fig. S2. The FE-SEM images of $Bi_{7.38}Cr_{0.62}O_{12+x}$ crystal.

Fig. S3. The N₂ adsorption-desorption curve of $Bi_{7.38}Cr_{0.62}O_{12+x}$ crystal. Inset is the pore size distribution curve.


Fig. S4. The photocatalytic degradation ($\lambda > 420$ nm) of phenol for $Bi_{7.38}Cr_{0.62}O_{12+x}$ crystal.

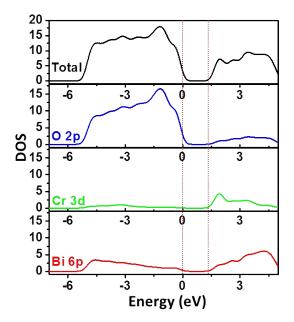

Fig. S5. The photocatalytic degradation ($\lambda > 420$ nm) of methylene blue (A) and methyl blue (B) for Bi_{7.38}Cr_{0.62}O_{12+x} crystal.

Fig. S6. The photocatalytic degradation ($\lambda > 420$ nm) of methylene blue (A, B) and methyl blue (C, D) for N doped P25 and Bi_{7.38}Cr_{0.62}O_{12+x} crystal.

Fig. S7. The photocatalytic degradation ($\lambda > 420$ nm) of methyl blue (A and B) by the addition of 100 mg of AgNO₃ (electrons scavenger) and 5 mL of methanol (holes scavenger), respectively.

Fig. S8. The calculated density of state (DOS) of $Bi_{7.38}Cr_{0.62}O_{12+x}$ was carried out by using the periodic density functional theory package of Cambridge Serial Total Energy Package (CASTEP) codes.

Calculation Method:

In this work, all of the calculations were carried out using the periodic density functional theory package of Cambridge Serial Total Energy Package (CASTEP) codes. CASTEP is a state-of-the-art quantum mechanics-based program designed specifically for solid-state materials science. The core electrons were treated with the ultrasoft pseudopotential. The exchange-correlation effects of valence electrons were described through the generalized gradient (GGA), within the Perdew-Burke-Ernzerhof (PBE) function. The Bi_{7.38}Cr_{0.62}O₁₂ crystal structure was built based on the tetragonal Bi₂O₃, space group P-421 c(114), the 2×2×2 supercell of Bi₂O₃ was built and one Bi atom was replaced by the Cr, which the formula approximate to Bi_{7.38}Cr_{0.62}O₁₂. The Monkhorst-Pack scheme *k*-points grid sampling was set as $3\times3\times3$ for the irreducible Brillouin zone. An energy cutoff of 450 eV was used for expanding the Kohn-Sham wave functions. The convergence criteria were set as the force on the atoms less than $0.01 \text{ eV} \text{ Å}^{-1}$, the stress on the atoms less than 0.02 GPa, the atomic displacement less than $5\times10^{-6} \text{ eV}$.