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Optimized adsorption structure --- side-on O2

ΔEads=-3.17 eV          ΔEads=-3.15 eV         ΔEads=-3.15 eV 

Optimized adsorption structure --- end-on O2

ΔEads=-2.30 eV         ΔEads=-2.29 eV          ΔEads=-2.29 eV

Optimized adsorption structure --- O+O

ΔEads=-10.10 eV         ΔEads=-9.52 eV         ΔEads=-9.12 eV 



ΔEads=-9.12 eV          ΔEads=-8.76 eV  

Optimized adsorption structure --- O

ΔEads=-6.45 eV          ΔEads=-4.65 eV         ΔEads=-4.65 eV

Optimized adsorption structure --- OH

ΔEads=-4.2 eV          ΔEads=-4.33 eV         ΔEads=-4.30 eV



Optimized adsorption structure --- OOH

ΔEads=-3.00 eV          ΔEads=-3.00 eV

Optimized adsorption structure --- O+OH

ΔEads=-8.82 eV          ΔEads=-8.82eV          ΔEads=-8.81 eV
       

Optimized adsorption structure --- OH+OH

ΔEads=-8.82 eV         ΔEads=-8.82eV          ΔEads=-8.81 eV



ΔEads=-7.70 eV

Optimized adsorption structure --- H2O

ΔEads=-0.80 eV          ΔEads=-0.58 eV          ΔEads=-0.11 eV

Optimized adsorption structure --- H

ΔEads=-2.79 eV          ΔEads=-1.50 eV          ΔEads=-1.50 eV



ΔEads=-1.50 eV          ΔEads=-1.50 eV          ΔEads=-1.50 eV

ΔEads=-1.50 eV          ΔEads=-1.09 eV          ΔEads=-1.06 eV

Fig. S1 Possible configurations for each adsorbed species (side-on O2, end-on O2, 

O+O, O, OH, OOH, O+OH, OH+OH, H2O and H) involved in the ORR on Fe-N3-Gra. 

∆Eads is the adsorption energy (eV). In the figure, the brown, pink, blue, red, and cyan 

balls represent C, Fe, N, O and H atoms, respectively.



Fig. S2 The O hydrogenation into OH (d1
’). ΔEb is the energy barrier (eV) and ΔH is 

the reaction energy (eV).

Quantum Chemical Molecular Dynamics Simulations

The Quantum Chemical Molecular dynamics (QM/MD) simulations of HOOH 

species decomposition for the ORR on the Fe-N3-Gra catalyst were performed based 

on the self-consistent charge density functional tight-binding (SCC-DFTB) method 

[1]. The standard trans3d-0-1 [2] and mio-0-1 [1] parameter sets were used the in 

simulations. The occupancy of each molecular orbital was described by a Fermi-Dirac 

distribution function with an electronic temperature (Te) [3, 4] of 2000 K. The 

Newtonian equations were integrated by using the Velociy-Verlet algorithm [5] with a 

time step of 0.5 fs. The decomposition reaction temperature (Tn) was held constant at 

300 K in the NVT ensemble throughout the simulations via a Nosé−Hoover chain 

thermostat [6]. 

Two initial configurations are selected, that is, the HOOH species without 

adsorbing (dFe-O = 5 Å) and with adsorbing (dFe-O = 2 Å) on the Fe-N3-Gra surface. We 

performed three decomposed trails for each configuration at different initial velocities 

during the 50 ps simulations. A time step of 0.5 fs is used for these simulations. The 

calculated results show that the HOOH first adsorbs on TFe site and then breaks 

immediately to form OH+OH or O+H2O structures for the HOOH without adsorbing 

(dFe-O = 5 Å) configuration, as shown in Fig. 3. The O-O bond cleavages occur at 

0.075 ps, 0.15 ps, and 0.05 ps for three decomposed trails, respectively. The result 

suggests that the O-O bond can immediately be broken. Similarly, the phenomena 



could also be observed for the HOOH species with adsorbing (dFe-O = 2 Å) on Fe-N3-

Gra surface, as shown in Fig. S3. Therefore, our calculations demonstrated that ORR 

is a direct four-electron process for Fe-N3-Gra.
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Fig. S3 Evolution of molecular dynamic simulations of the HOOH species with 

adsorbing (dFe-O = 2 Å) on the Fe-N3-Gra surface at 300 K.


