## **Electronic Supplementary Information**

## Mesoporous Ag@TiO<sub>2</sub> Nanofibers and Their Photocatalytic Activity for

## **Hydrogen Evolution**

Minghui Shang, Huilin Hou\*, Fengmei Gao, Lin Wang and Weiyou Yang\*

Institute of Materials, Ningbo University of Technology, Ningbo City, 315016, P.R. China

Corresponding author E-mails: houhuilin86@163.com (H. Hou)

weiyouyang@tsinghua.org.cn (W. Yang)

*Tel:* +86-574-87080966

Fax: +86-574-87081221

| Samples            | Crystallite<br>(101) | Crystallite<br>(004) | Crystallite<br>(200) | Average crystal size (nm) |
|--------------------|----------------------|----------------------|----------------------|---------------------------|
| Unloaded Sample    | 21.1                 | 26.9                 | 22.2                 | 23.4                      |
| Ag loaded sample A | 19.1                 | 24.2                 | 18.3                 | 20.5                      |
| Ag loaded sample B | 20.6                 | 25.8                 | 21.8                 | 22.7                      |

Table S1. Crystal size of the  $TiO_2$  according to the XRD results of the three sample products



**Fig. S1.** A typical TEM image of the pure  $TiO_2$  Sample



Fig. S2. A typical HTRM image showing that the assembled Ag nanoparticle in the platform of porous  $TiO_2$  fibers of Sample A is hemispheric shape and the areas is 402 nm<sup>2</sup>. The green marked areas refer to the crystalline Ag nanoparticles.



Fig. S3. A typical HTRM image showing that the assembled Ag nanoparticle in the platform of porous  $TiO_2$  fibers of Sample B is sphaeroid shape and the areas is  $615nm^2$ . The green marked areas refer to the crystalline Ag nanoparticles.



**Fig. S4.** (a) A representative TEM image of the Ag loaded Smple B. (B) The corresponding particle size distribution of the silver NPs form (a) of Ag loaded Smple B. (c-d) Representative TEM images of the Ag loaded Smple A.

| Material                                        | Preparation                      | Irradiation conditions      | Reaction solution                    | Activity<br>(μmol g <sup>-1</sup> h <sup>-1</sup> ) | Reference    |
|-------------------------------------------------|----------------------------------|-----------------------------|--------------------------------------|-----------------------------------------------------|--------------|
| Cu/TiO <sub>2</sub> spherical particles         | impregnation                     | 6 W UV<br>lampe             | methanol/<br>water                   | 333.5                                               | 1            |
| Pt/TiO <sub>2</sub><br>Nanosheets               | hydrothermal                     | 350-W Xe<br>arc lamp        | ethanol/w<br>ater                    | 334                                                 | 2            |
| Au/TiO <sub>2</sub>                             | photodeposition                  | 500 W<br>xenon (Xe)<br>lamp | 2-<br>propanol/<br>water<br>solution | 1320                                                | 3            |
| Ag-TiO <sub>2</sub>                             | sol-gel                          | 6 W UV<br>lampe             | methanol/<br>water                   | 356.75                                              | 4            |
| Pt/TiO <sub>2</sub> (B)<br>Nanofiber            | wet impregnation                 | 15 W UV<br>lamp             | Neat<br>ethanol                      | 477                                                 | 5            |
| Pt/TiO <sub>2</sub> (B) nanofiber               | impregnation                     | 15 W UV<br>lamps            | neat<br>ethanol                      | 2380                                                | 6            |
| Au/Pt/TiO2<br>composite<br>nanofibers           | electrospinning                  | 300 W Xe<br>lamp            | aqueous solution                     | 233.16                                              | 7            |
| Au-Pt/TiO <sub>2</sub><br>nanoparticles         | chemical reduction               | 300 W<br>xenon arc<br>lamp  | water/met<br>hanol                   | 1183                                                | 8            |
| Ag/TiO <sub>2</sub><br>mesoporous<br>nanofibers | foaming-assisted electrospinning | 300 W Xe                    | water/met<br>hanol                   | 537.5                                               | Current work |

Table S2. Comparison of the related work for photocatalytic  $H_2$  production

## References

- 1. H. J. Choi and M. Kang, Int. J. Hydrogen Energy, 2007, 32, 3841-3848.
- 2. J. Yu, L. Qi and M. Jaroniec, J. Phys. Chem. C, 2010, 114, 13118-13125.
- 3. A. Tanaka, S. Sakaguchi, K. Hashimoto and H. Kominami, Acs Catalysis, 2012, 3, 79-85.
- 4. M. S. Park and M. Kang, Mater. Lett., 2008, 62, 183-187.
- F. C. Wang, C. H. Liu, C. W. Liu, J. H. Chao and C. H. Lin, J. Phys. Chem. C, 2009, 113, 13832-13840.
- 6. C. H. Lin, J. H. Chao, C. H. Liu, J. C. Chang and F. C. Wang, *Langmuir*, 2008, 24, 9907-9915.
- 7. Z. Zhang, Z. Wang, S. W. Cao and C. Xue, J. Phys. Chem. C, 2013, 117, 25939-25947.
- F. Wang, Y. Jiang, D. J. Lawes, G. E. Ball, C. Zhou, Z. Liu, and R. Amal, ACS Catalysis, 2015, 5, 3924-3931.